Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(10): 6881-6892, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33748602

RESUMO

Produced water (PW) is the water associated with hydrocarbons during the extraction of oil and gas (O&G) from either conventional or unconventional resources. Existing efforts to enhance PW management systems include the development of novel membrane materials for oil-water separation. In attempting to evaluate these emerging physical separation technologies, researchers develop various formulations of test solutions aiming to represent actual PW. However, there is no clear scientific guideline published in the literature about how such a recipe should be prepared. This article develops a protocol for preparing synthetic solutions representing the characteristics and behavior of actual PW and enabling the performance comparisons of different oil-water separation membranes at the bench scale level. In this study, two different brine recipes were prepared based on salts present in actual PW, crude oil was used as the hydrocarbon source, and a surfactant was added to disperse the oil into the aqueous phase. The recipe is accessible to the wider scientific community and was proven to be reproduceable, homogenous, stable, and comparable to actual PW field samples through analytical monitoring measurements and bench scale evaluations.

2.
Water Res ; 163: 114879, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31336205

RESUMO

Over the past 5-10 years it has become apparent that the significant energy benefit provided by forward osmosis (FO) for desalination arises only when direct recovery of the permeate product from the solution used to transfer the water through the membrane (the draw solution) is obviated. These circumstances occur specifically when wastewater purification is combined with saline water desalination. It has been suggested that, for such an "open loop" system, the FO technology offers a lower-cost water reclamation option than the conventional process based on reverse osmosis (RO). An analysis is presented of the costs incurred by this combined treatment objective. Three process schemes are considered combining the FO or RO technologies with membrane bioreactors (MBRs): MBR-RO, MBR-FO-RO and osmotic MBR (OMBR)-RO. Calculation of the normalised net present value (NPV/permeate flow) proceeded through developing a series of empirical equations based on available individual capital and operating cost data. Cost curves (cost vs. flow capacity) were generated for each option using literature MBR and RO data, making appropriate assumptions regarding the design and operation of the novel FO and OMBR technologies. Calculations revealed the MBR-FO-RO and OMBR-RO schemes to respectively offer a ∼20% and ∼30% NPV benefit over the classical MBR-RO scheme at a permeate flow of 10,000 m3  d-1, provided the respective schemes are applied to high and low salinity wastewaters. Outcomes are highly sensitive to the FO or OMBR flux sustained: the relative NPV benefit (compared to the classical system) of the OMBR-RO scheme declined from 30% to ∼4% on halving the OMBR flux from a value of 6 L m-2. h-1.


Assuntos
Águas Residuárias , Purificação da Água , Reatores Biológicos , Membranas Artificiais , Osmose
3.
Environ Sci Technol ; 50(11): 6044-52, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27161935

RESUMO

Produced and process water (PPW) from oil and gas operations, specifically in Qatar, are disposed of by deep well injection in onshore facilities. Disposing large volumes of PPW may affect deep well formation sustainability highlighting the need for effective PPW management. Forward osmosis (FO) was applied as an "osmotic concentration" process to reduce PPW injection volumes by 50% using brines and seawater as draw solutions (DS). The energy intensive step of restoring the salinity of the DS was eliminated; the diluted DS would be simply discharged to the ocean. Both hollow fiber and flat sheet FO membranes were tested and the former exhibited better flux and rejection; they are the focus of this study. Optimization experiments, conducted using Box-Behnken statistical design, confirmed that temperature and DS concentration had a substantial effect on performance. To validate the concept, a long-term experiment, under optimized conditions, was conducted with PPW as feed and brine from thermal desalination plant as DS which yielded an average flux of 24 L/m(2)h. The results confirmed that low-energy osmotic concentration FO has the potential for full-scale implementation to reduce PPW injection volumes. Pilot testing opportunities are being evaluated to demonstrate the effectiveness of this technology under field conditions.


Assuntos
Purificação da Água , Água , Membranas Artificiais , Osmose , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...