Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 22(11): 1310-1329, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36112369

RESUMO

At a Mars analog site in Utah, we tested two science operation methods for data acquisition and decision-making protocols: a scenario where the tactical day is preplanned, but major adjustments may still be made before plan delivery; and a scenario in which the sol path must largely be planned before a given tactical planning day and very few adjustments to the plan may be made. The goal was to provide field-tested insight into operations planning for rover missions where science operations must facilitate the efficient choice of sampling locations at a site relevant to searching for habitability and biosignatures. Results of the test indicate that preplanning sol paths did not result in a sol cost savings nor did it improve science return or optimal biologically relevant sample collection. In addition because facies variations in an environment can be subtle and evident only at scales below orbital resolution, acquiring systematic observations is crucial. We also noted that while spectral data provided insight into the chemical components as a whole at this site, they did not provide a guide to targets for which the traverse should be altered. Finally, strategic science planning must include a special effort to account for terrain.


Assuntos
Exobiologia , Marte , Exobiologia/métodos , Meio Ambiente Extraterreno , Objetivos , Planejamento Estratégico
2.
Astrobiology ; 20(3): 327-348, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32023426

RESUMO

We conducted a field test at a potential Mars analog site to provide insight into planning for future robotic missions such as Mars 2020, where science operations must facilitate efficient choice of biologically relevant sampling locations. We compared two data acquisition and decision-making protocols currently used by Mars Science Laboratory: (1) a linear approach, where sites are examined as they are encountered and (2) a walkabout approach, in which the field site is first examined with remote rover instruments to gain an understanding of regional context followed by deployment of time- and power-intensive contact and sampling instruments on a smaller subset of locations. The walkabout method was advantageous in terms of both the time required to execute and a greater confidence in results and interpretations, leading to enhanced ability to tailor follow-on observations to better address key science and sampling goals. This advantage is directly linked to the walkabout method's ability to provide broad geological context earlier in the science analysis process. For Mars 2020, and specifically for small regions to be explored (e.g., <1 km2), we recommend that the walkabout approach be considered where possible, to provide early context and time for the science team to develop a coherent suite of hypotheses and robust ways to test them.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno , Geologia/métodos , Marte , Projetos de Pesquisa , Exobiologia/instrumentação , Geologia/instrumentação , Veículos Off-Road , Robótica , Simulação de Ambiente Espacial
3.
Earth Space Sci ; 4(8): 506-539, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-29098171

RESUMO

The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 µrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 µrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from ~1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the ~2 m tall Remote Sensing Mast, have a 360° azimuth and ~180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at ~66 cm above the surface. Its fixed focus lens is in focus from ~2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of ~70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA