Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 21(Pt 4): 774-83, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24971974

RESUMO

The retrieval of spatially resolved atomic displacements is investigated via the phases of the direct(real)-space image reconstructed from the strained crystal's coherent X-ray diffraction pattern. It is demonstrated that limiting the spatial variation of the first- and second-order spatial displacement derivatives improves convergence of the iterative phase-retrieval algorithm for displacements reconstructions to the true solution. This approach is exploited to retrieve the displacement in a periodic array of silicon lines isolated by silicon dioxide filled trenches.

2.
Opt Express ; 21(23): 27734-49, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514289

RESUMO

Coherent X-ray diffraction imaging (CXDI) of the displacement field and strain distribution of nanostructures in kinematic far-field conditions requires solving a set of non-linear and non-local equations. One approach to solving these equations, which utilizes only the object's geometry and the intensity distribution in the vicinity of a Bragg peak as a priori knowledge, is the HIO+ER-algorithm. Despite its success for a number of applications, reconstruction in the case of highly strained nanostructures is likely to fail. To overcome the algorithm's current limitations, we propose the HIO(O(R))(M)+ER(M)-algorithm which allows taking advantage of additional a priori knowledge of the local scattering magnitude and remedies HIO+ER's stagnation by incorporation of randomized overrelaxation at the same time. This approach achieves significant improvements in CXDI data analysis at high strains and greatly reduces sensitivity to the reconstruction's initial guess. These benefits are demonstrated in a systematic numerical study for a periodic array of strained silicon nanowires. Finally, appropriate treatment of reciprocal space points below noise level is investigated.

3.
Rev Sci Instrum ; 83(10): 105112, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126809

RESUMO

A portable synchrotron molecular beam epitaxy (MBE) system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, reflection high energy electron diffraction setup, and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate its performance by investigating the annealing process of buried InGaAs self-organized quantum dots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...