Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stress Biol ; 4(1): 8, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38273092

RESUMO

Worldwide wastewater treatment plants generate enormous amounts of sewage sludge, and their further disposal depends on the treatment technologies applied and spontaneously occurring microbiological processes. From different ages urban sewage sludge, 12 strains of bacteria with simultaneous tolerance to two or more trace elements: Co, Ni, Cu, Zn, Cd and Pb at concentration of 3-5 mmol were isolated and identified by PCR of target genes and Sanger sequencing methods. The isloated metal(loids) tolerant strains belong to the species, i.e., Serratia fonticola, Rhodococcus qingshengii, Pseudomonas fragi, Pseudomonas extremaustralis, Pseudomonas cedrina, Stenotrophomonas maltophilia, Serratia liquefaciens and Citrobacter freundii. The ecological features of the isolated strains were studied. The optimal growth temperatures for most strains was 15-30°C at pH range of 5-9, although some strains grew at 7°C (Pseudomonas fragi SS0-4, Serratia fonticola SS0-9 and Serratia fonticola SS12-11). Satisfactory growth of two strains (Serratia fonticola SS0-1and Citrobacter freundii SS60-12) was noted in an acidic medium at pH 4. Most of the strains grew in the NaCl concentration range of 1-5%. The isolated bacteria resistant to high concentrations of trace elements can be used for the effective mineralization of sewage sludge and for the decontamination of wastewater.

2.
Arch Environ Contam Toxicol ; 84(1): 101-118, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36580131

RESUMO

The city of Nizhnevartovsk is one of the centers of oil production in Western Siberia (Russia). A survey of the contents of trace metals and metalloids (TMMs) and polycyclic aromatic hydrocarbons (PAHs) in the snow cover was conducted there. It was aimed to study insoluble particles in the snow where the predominant fraction of pollutants in urban areas is concentrated. In contrast to the background area, the deposition of TMMs in Nizhnevartovsk increases by 1-2 orders of magnitude. The deposition of V and Mn increases by 37 and 88 times, respectively, and the deposition of W increases at most (by 98 times). Abrasion of spikes of winter tires, abrasion of metal parts of vehicles, and combustion of motor fuels cause the pollution with W, Co, and V, respectively. The total content of 12 EPA PAHs in the particulate fraction of snow in the urban area averaged 148.2 ng l-1, and the deposition rate was 17.0 µg/m2. In contrast to the background area, the fraction of high molecular weight 5-6-ring PAHs significantly increases in the city, especially dibenzo(a,h)anthracene (DahA). The indicative ratios of PAHs showed that the snowpack composition was influenced by both petrogenic and pyrogenic sources. The proportion of pyrogenic sources is the highest in the low-rise residential area due to fuel combustion to produce heat and burning of household waste. The impact of motor transport is also major and is manifested in the maximum pollution in areas of heavy traffic. No emissions of PAHs from oil spills from the nearby Samotlor oil field have been identified. It is concluded that the hydrocarbon pollution of the atmosphere from the field weakens during the winter period compared to the warm season. Application of the integral TDF index characterizes the majority (72%) of the studied samples as lowly polluted, 24% of the observation sites are classified as moderately polluted, and one (4%), as highly polluted. The maximum TDF values are observed in the industrial area. The data obtained during the study allowed us to identify the central areas and sites along the roads with the heaviest traffic as the most contaminated areas of the city. This study can be a reference for air pollution monitoring in Nizhnevartovsk.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Oligoelementos , Sibéria , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Neve , Federação Russa , Poluentes Atmosféricos/análise
3.
Microbiol Res ; 254: 126913, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34798540

RESUMO

Metagenomic studies of soil microbocenoses are extremely relevant nowadays. The study of pollution impact on soil microbiomes is of particular interest. The structure of microbial communities in soils with different levels of pollution by polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) was studied. High bacterial biodiversity was found in all the studied soil samples, but its lowest values are found in soil samples taken on the territory of technogenically polluted Lake Atamanskoye. Assessment of soil pollution showed the highest content of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) for the soils Lake Atamanskoye. The high content of pollutants negatively affects the abundance of representatives of the phyla Actinobacteria, Planctomycetes, Verrucomicrobia, and Nitrospirae. Such phyla as Proteobacteria, Candidate Divisions TM7, OD1, WPS-2, Chlamydiae, Cyanobacteria are characterized by positive direct correlation with the content of pollutants, especially with PAHs. A cooperative effect of decrease in the number of Actinobacteria and Proteobacteria with an increase in Armatimonadetes probably corresponds to PTEs contamination. The proportion of Candidate Division OD1, Chlamydiae, Cyanobacteria, and Candidate Division WPS-2 was increased in the soil microbiome under the influence of severe combined pollution. Pollutants negatively affect the abundance of dominant unclassified_o__Gaiellales and unclassified_o__WD2101 genera. Iamia, Salinibacterium, Arthrobacter, Kaistobacter, Thiobacillus genera are characterized by a low abundance, but they are presumably the most resistant to soil pollution. It was revealed that the level of soil pollution largely determines the composition and diversity of bacterial communities in the soils of the studied territories. Operating taxonomic units have been established that have prognostic value for assessing the state, level of soil pollution, and their biological safety.


Assuntos
Bactérias/efeitos dos fármacos , Biodiversidade , Poluentes Ambientais , Microbiota , Microbiologia do Solo , Efeitos Antropogênicos , Poluentes Ambientais/farmacologia , Microbiota/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/farmacologia
4.
Environ Res ; 194: 110715, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33444610

RESUMO

The influence of anthropogenic pollution, particularly with polycyclic aromatic hydrocarbons (PAHs) on soil toxicity and spread of antibiotic resistance genes (ARGs) is extremely important nowadays. We studied 20 soil samples from a technogenically polluted site, municipal solid wastes (MSW) landfills, and rural settlements in the southwestern part of the Rostov Region of Russia. A close correlation was established between the results of biosensor testing for integral toxicity, the content of genes for the biodegradation of hydrocarbons, and the concentration of PAHs in soils. The relation between the quantitative content of ARGs and the qualitative and quantitative composition of PAHs has not been registered. Soils subjected to different types of the anthropogenic pressure differed in PAHs composition. The technogenic soils are the most polluted ones. These soils are enriched with 5 ring PAHs and carry the maximum variety of assayed ARGs, despite the fact that they do not receive household or medical waste.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Antibacterianos , Resistência Microbiana a Medicamentos , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Federação Russa , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...