Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(9): e0248794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506492

RESUMO

Electroencephalography (EEG) likely reflects activity of cortical neurocircuits, making it an insightful estimation for mental health in patients with substance use disorder (SUD). EEG signals are recorded as sinusoidal waves, containing spectral amplitudes across several frequency bands with high spatio-temporal resolution. Prior work on EEG signal analysis has been made mainly at individual electrodes. These signals can be evaluated from advanced aspects, including sub-regional and hemispheric analyses. Due to limitation of computational techniques, few studies in earlier work could conduct data analyses from these aspects. Therefore, EEG in patients with SUD is not fully understood. In the present retrospective study, spectral powers from a data house containing opioid (OUD), methamphetamine/stimulants (MUD), and alcohol use disorder (AUD) were extracted, and then converted into five distinct topographic data (i.e., electrode-based, cortical subregion-based, left-right hemispheric, anterior-posterior based, and total cortex-based analyses). We found that data conversion and reorganization in the topographic way had an impact on EEG spectral powers in patients with OUD significantly different from those with MUD or AUD. Differential changes were observed from multiple perspectives, including individual electrodes, subregions, hemispheres, anterior-posterior cortices, and across the cortex as a whole. Understanding the differential changes in EEG signals may be useful for future work with machine learning and artificial intelligence (AI), not only for diagnostic but also for prognostic purposes in patients with SUD.


Assuntos
Encéfalo/diagnóstico por imagem , Eletroencefalografia/métodos , Transtornos Relacionados ao Uso de Substâncias/diagnóstico por imagem , Adulto , Alcoolismo/diagnóstico por imagem , Alcoolismo/fisiopatologia , Feminino , Humanos , Masculino , Metanfetamina , Pessoa de Meia-Idade , Transtornos Relacionados ao Uso de Opioides/diagnóstico por imagem , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Estudos Retrospectivos , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia
2.
J Addict ; 2019: 8586153, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662946

RESUMO

OBJECTIVES: Noninvasive estimation of cortical activity aberrance may be a challenge but gives valuable clues of mental health in patients. The goal of the present study was to characterize specificity of electroencephalogram (EEG) electrodes used to assess spectral powers associated with mental health conditions of patients with opioid use disorder. METHODS: This retrospective study included 16 patients who had been diagnosed with opioid use disorder in comparison with 16 sex- and age-matched healthy controls. EEG electrodes were placed in the frontal (FP1, FP2, F3, F4, F7, F8, and Fz), central (C3, C4, and Cz), temporal (T3, T4, T5, and T6), parietal (P3, P4, and Pz), and occipital scalp (O1 and O2). Spectral powers of δ, θ, α, ß, and γ oscillations were determined, and their distribution was topographically mapped with those electrodes on the scalp. RESULTS: Compared to healthy controls, the spectral powers at low frequencies (<8 Hz; δ and θ) were increased in most electrodes across the scalp, while powers at the high frequencies (>12 Hz; ß and γ) were selectively increased only at electrodes located in the frontal and central scalp. Among 19 electrodes, F3, F4, Fz, and Cz were highly specific in detecting increases in δ, θ, ß, and γ powers of patients with opioid use disorders. CONCLUSION: Results of the present study demonstrate that spectral powers are topographically distributed across the scalp, which can be quantitatively characterized. Electrodes located at F3, F4, Fz, and Cz could be specifically utilized to assess mental health in patients with opioid use disorders. Mechanisms responsible for neuroplasticity involving cortical pyramidal neurons and µ-opioid receptor regulations are discussed within the context of changes in EEG microstates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...