Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959518

RESUMO

Austenite-ferrite phase transformation is a crucial metallurgical tool to tailor the properties of steels required for particular applications. Extensive simulation and modeling studies have been conducted to evaluate the phase transformation behaviors; however, some fundamental physical parameters still need to be optimized for better understanding. In this study, the austenite-ferrite phase transformation was evaluated in carbon steels with three carbon concentrations during isothermal annealing at various temperatures using a developed cellular automaton simulation model combined with Bayesian optimization. The simulation results show that the incubation period for nucleation is an essential factor that needs to be considered during austenite-ferrite phase transformation simulation. The incubation period constant is mainly affected by carbon concentration and the optimized values have been obtained as 10-24, 10-19, and 10-21 corresponding to carbon concentrations of 0.2 wt%, 0.35 wt%, and 0.5 wt%, respectively. The average ferrite grain size after phase transformation completion could decrease with the decreasing initial austenite grain size. Some other parameters were also analyzed in detail. The developed cellular automaton simulation model combined with Bayesian optimization in this study could conduct an in-depth exploration of critical and optimal parameters and provide deeper insights into understanding the fundamental physical characteristics during austenite-ferrite phase transformation.

2.
J Oceanogr ; 79(3): 199-209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36000070

RESUMO

A sediment trap experiment was conducted at a depth of 750 m at the mouth of Tokyo Bay to clarify the quantity and transport process of particles from the bay to the open ocean. The high total mass flux (8.7 ± 4.5 g m-2 d-1) suggests that the particles not only originate in the surface layer right above the trap, but are also focused in Uraga Channel and discharged into the bay mouth. The organic carbon and nitrogen isotope ratios (δ13Corg, δ15N) of the trapped particles were like those of the surface sediment in the bay, that is, a mixture of particles in rivers and suspended particles in the surface layer of the bay. Compared with the results of the experiment conducted in 1995-2002, the average total mass flux was reduced by 70% and organic carbon content was reduced by 50%. The δ13Corg values of trapped particles were also lower than those observed in the previous experiment, indicating a lower contribution from surface-suspended particles with high δ13Corg values in the bay. These results could partly reflect a decrease of the concentration of the suspended particulate carbon in the bay by half over 20 years. Another factor contributing to the decrease of the flux at the bay mouth would be that the intrusion of Kuroshio coastal water into the bay, which pushes particles out to the bay mouth, has not occurred in recent years.

3.
Environ Sci Pollut Res Int ; 30(10): 26120-26136, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36350443

RESUMO

In Mikawa Bay, where hypoxia occurs in the bottom layer during summer, six shipboard observations were conducted from the mouth to the head of the bay from May to August 2014 to investigate the spatiotemporal variation in the bottom layer oxygen consumption rate (OCR). The OCR was determined from the dark incubation of sample waters using an optical oxygen sensor, which showed a range of 5.7-38.3 mmol m-3 days-1. A high OCR was observed at the inner-most station, where higher concentrations of nutrients and chlorophyll a (Chl a) than at the other stations were found, and bottom hypoxic water appeared during the observation period after late June. These OCRs can deplete the oxygen dissolved in water within a week. The OCR showed a highly significant positive correlation with particulate organic carbon concentrations in the bottom water. Considering the relatively low carbon-to-nitrogen mole ratio (~ 6.4-7.6) and high carbon isotope ratio (between approximately - 20.2 and - 18.8‰) of particulate organic matter at the stations, the supply of fresh organic matter produced in the bay as opposed to the land may have affected the OCR by acting as a substrate for microbial aerobic respiration. High temporal resolution data from two automated observation buoys near the bay mouth and the inner area captured increases in Chl a at both sites in response to typhoon events, along with the subsequent appearance of bottom hypoxic water at the inner site and its expansion at the mouth. This supports our hypothesis that enhanced organic matter production due to nutrient input to the surface layer through vertical mixing would increase the bottom OCR, resulting in hypoxia. The apparent oxygen decline in the bottom layer from the buoy data was consistent with incubation-based OCRs during the observation period. Therefore, it is essential to model the OCR in numerical simulations of hypoxia, to which the variability characteristics that we revealed made significant contributions.


Assuntos
Baías , Água , Humanos , Clorofila A , Japão , Estações do Ano , Oxigênio/análise , Carbono , Hipóxia , Consumo de Oxigênio , Eutrofização
4.
J Environ Radioact ; 172: 163-172, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28380392

RESUMO

We investigated temporal changes of the contamination of oceanic zooplankton with radiocesium (134Cs and 137Cs) derived from the Fukushima Dai-ichi Nuclear Power Plant accident one month to three years after the accident at subarctic and subtropical stations (1900 and 900-1000 km from the plant, respectively) in the western North Pacific. The maximum activity concentrations of 137Cs in zooplankton were two orders of magnitude higher than the pre-accident level. In the first four months after the accident, the activity concentrations of radiocesium in subtropical zooplankton decreased rapidly, but no similar change was observed at the subarctic station. The radiocesium derived from atmospheric deposition rapidly decreased as a result of seawater mixing. Thus, most of the subtropical zooplankton (with short lifespans) that had taken up radiocesium just after the accident were probably replaced by newly hatched zooplankton within four months of the accident, whereas subarctic zooplankton (with long lifespans) that were highly contaminated with radiocesium were still alive four months after the accident. By the end of the study, 137Cs activity concentrations in subtropical zooplankton were still high, whereas the activity concentrations in subarctic zooplankton had decreased to nearly the pre-accident level. The former concentrations were probably influenced by a secondary supply of radiocesium via advection of subtropical mode water that was highly contaminated with Fukushima-derived radiocesium. Unexpectedly, at the subarctic station, the radiocesium activity concentrations in surface zooplankton were lower than those in subsurface zooplankton, whereas the opposite relationship was observed in surface and subsurface seawater. Because carnivores predominated in the subsurface zooplankton community, we hypothesize that the higher radiocesium activity concentrations in subsurface zooplankton were influenced by bioaccumulation. We conclude that radiocesium activity concentrations in zooplankton are influenced not only by the supply of radiocesium to the environment but also by the characteristics of the zooplankton community.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água/análise , Zooplâncton/química , Animais , Japão , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...