Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35921343

RESUMO

Transparent ultrasound transducer (TUT) technology allows easy co-alignment of optical and acoustic beams in the development of compact photoacoustic imaging (PAI) devices with minimum acoustic coupling. However, TUTs suffer from narrow bandwidth and low pulse-echo sensitivity due to the lack of suitable transparent acoustic matching and backing layers. Here, we studied translucent glass beads (GB) in transparent epoxy as an acoustic matching layer for the transparent lithium niobate piezoelectric material-based TUTs (LN-TUTs). The acoustic and optical properties of various volume fractions of GB matching layers were studied using theoretical calculations, simulations, and experiments. These results demonstrated that the GB matching layer has significantly enhanced the pulse-echo sensitivity and bandwidth of the TUTs. Moreover, the GB matching layer served as a light diffuser to help achieve uniform optical fluence on the tissue surface and also improved the photoacoustic (PA) signal bandwidth. The proposed GB matching layer fabrication is low cost, easy to manufacture using conventional ultrasound transducer fabrication tools, acoustically compatible with soft tissue, and minimizes the use of the acoustic coupling medium.


Assuntos
Acústica , Transdutores , Desenho de Equipamento , Ultrassonografia
2.
BME Front ; 2022: 9871098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850172

RESUMO

Objective and Impact Statement. Simultaneous imaging of ultrasound and optical contrasts can help map structural, functional, and molecular biomarkers inside living subjects with high spatial resolution. There is a need to develop a platform to facilitate this multimodal imaging capability to improve diagnostic sensitivity and specificity. Introduction. Currently, combining ultrasound, photoacoustic, and optical imaging modalities is challenging because conventional ultrasound transducer arrays are optically opaque. As a result, complex geometries are used to coalign both optical and ultrasound waves in the same field of view. Methods. One elegant solution is to make the ultrasound transducer transparent to light. Here, we demonstrate a novel transparent ultrasound transducer (TUT) linear array fabricated using a transparent lithium niobate piezoelectric material for real-time multimodal imaging. Results. The TUT-array consists of 64 elements and centered at ~6 MHz frequency. We demonstrate a quad-mode ultrasound, Doppler ultrasound, photoacoustic, and fluorescence imaging in real-time using the TUT-array directly coupled to the tissue mimicking phantoms. Conclusion. The TUT-array successfully showed a multimodal imaging capability and has potential applications in diagnosing cancer, neurological, and vascular diseases, including image-guided endoscopy and wearable imaging.

3.
IEEE Sens Lett ; 5(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35707748

RESUMO

We recently introduced piezoelectric lithium niobate (LN) based transparent ultrasound transducers (TUT) as a new platform for developing multimodal optical, ultrasound and photoacoustic imaging systems. However, LN based TUT is limited in its signal-to-noise ratio due to material's low piezoelectricity (d 33). In this paper, we report, for the first time, a 0.2 mm thick transparent lead magnesium niobate-lead titanate (PMN-PT) based TUT (PMN-PT-TUT) for ultrasound and photoacoustic applications and compared its performance with a 0.25 mm thick transparent LN based TUT (LN-TUT). To improve the ultrasound energy transmission efficiency, TUTs were fabricated with a two-matching-layer design. This resulted in a dual frequency response with center frequencies of 7.8 MHz/13.2 MHz and corresponding bandwidths of 28.2%/66.67% for PMN-PT-TUT, and center frequencies of 7.2 MHz/11.8 MHz and bandwidths of 36.1%/62.7% for LN-TUT. The optical transmission rate of PMN-PT-TUTs and LN-TUTs are measured as ~73% and ~91% respectively at 532 nm optical wavelength. The PMN-PT-TUT exhibited higher sensitivity compared to LN-TUT with a nearly three-fold higher pulse echo amplitude and more than two-fold higher photoacoustic amplitude. Furthermore, optical resolution photoacoustic microscopy (ORPAM) experiments on phantom targets demonstrated lateral resolutions of 7 µm and 5.1 µm, and axial resolutions of 285.6 µm and 375.9 µm for PMN-PT-TUT and LN-TUT respectively. These results indicated that PMN-PT is a viable alternative to LN for developing TUT based multimodal ultrasound and photoacoustic imaging systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...