Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110476

RESUMO

A promising direction in the treatment of HIV infection is a gene therapy approach based on the insertion of antiviral genes aimed at inhibiting HIV replication into the genome of host cells. We obtained six constructs of lentiviral vectors with different arrangements of three antiviral genes: microRNAs against the CCR5 gene, the gene encoding the C-peptide, and the gene encoding the modified human TRIM5a protein. We found that despite containing the same genes, these vectors were produced at different titers and had different effects on cell viability, transduction efficiency, and expression stability. Comparative evaluation of the antiviral activity of three of the six developed vectors that showed stable expression was carried out using the continuous SupT1 lymphocytic cell line. All of the vectors protected cells from HIV infection: the viral load was several orders of magnitude lower than in control cells, and with one vector, complete cessation of virus growth in modified cells was achieved.

2.
Vaccines (Basel) ; 11(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37112743

RESUMO

Dengue fever, an infectious disease that affects more than 100 million people every year, is a global health problem. Vaccination may be the most effective prevention strategy for the disease. However, the development of vaccines against dengue fever is complicated by the high risk of developing an antibody-dependent increase in infection. This article describes the development of an MVA-d34 vaccine against the dengue virus based on a safe and effective MVA viral vector. The DIII domains of the envelope protein (E) of the dengue virus are used as vaccine antigens, as antibodies against these domains do not cause an enhancement of infection. The use of the DIII domains of each of the four dengue virus serotypes made it possible to generate a humoral response against all four dengue virus serotypes in immunized mice. We also showed that the sera of vaccinated mice present virus-neutralizing activity against dengue serotype 2. Thus, the developed MVA-d34 vaccine is a promising candidate vaccine against dengue fever.

3.
Vaccines (Basel) ; 10(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35455283

RESUMO

Vaccination is an effective and economically viable means of protection against the influenza virus, but due to rapid viral evolution, modern seasonal vaccines are not effective enough. Next-generation vaccines are designed to provide protection against a wide range of influenza virus strains, including pandemic variants. In our work, we made an epitope-based universal vaccine, rMVA-k1-k2, against the influenza virus based on the modified vaccinia Ankara (MVA) vector and using our own algorithms to select epitopes from conserved fragments of the NP, M1 and HA proteins of influenza A and B. We show that double immunization protects mice with a 67% or greater efficiency against viral influenza pneumonia when infected with various strains of the H1N1, H2N2, H3N2 and H5N1 subtypes of influenza A. In animals, the level of protection provided by the rMVA-k1-k2 vaccine was comparable to that provided by the universal M001 and MVA-NP+M1 (Invictus) vaccines, which have shown success in clinical trials, against strains of the H1N1 and H3N2 subtypes.

4.
J Virol Methods ; 292: 114114, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662411

RESUMO

Nanopore sequencing of virus genomes represented by segmented RNA (e.g. rotaviruses) requires the development of specific approaches. Due to the massive use of rotavirus vaccines, the relevance of monitoring the genetic diversity of circulating strains of group A rotaviruses (RVA) increased. The WHO recommended method of multiplex type-specific PCR does not allow genotyping of all clinically significant strains of RVA and identifying inter-strain differences within the genotype. We have described a new principle of amplification of RVA gene segments using six primers for reverse transcription and one universal primer for PCR for nanopore sequencing. The amplification of RVA genome was tested on clinical samples and three phylogenetically distant laboratory RVA strains, Wa (G1P[8]), DS-1 (G2P[4]) and 568 (G3P[3]). The developed protocol of sample preparation and nanopore sequencing allowed obtaining full-length sequences for gene segments of RVA, including the diagnostically significant segments 9 (VP7), 4 (VP4) and 6 (VP6) with high accuracy and coverage. The accuracy of sequencing of the rotavirus genome exceeded 99.5 %, and the genome coverage varied for different strains from 59.0 to 99.6 % (on average 86 %). The developed approach of nanopore sequencing of RVA genome could be a prospective tool for epidemiological studies and surveillance of rotavirus infection.


Assuntos
Sequenciamento por Nanoporos , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Genoma Viral , Genótipo , Humanos , Filogenia , Rotavirus/genética , Infecções por Rotavirus/diagnóstico
5.
Microsc Microanal ; 26(2): 297-309, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32036809

RESUMO

Influenza A virus is a serious human pathogen that assembles enveloped virions on the plasma membrane of the host cell. The pleiomorphic morphology of influenza A virus, represented by spherical, elongated, or filamentous particles, is important for the spread of the virus in nature. Using fixative protocols for sample preparation and negative staining electron microscopy, we found that the recombinant A/WSN/33 (H1N1) (rWSN) virus, a strain considered to be strictly spherical, may produce filamentous particles when amplified in the allantoic cavity of chicken embryos. In contrast, the laboratory WSN strain and the rWSN virus amplified in Madin-Darby canine kidney cells exhibited a spherical morphology. Next-generation sequencing (NGS) suggested a rare Ser126Cys substitution in the M1 protein of rWSN, which was confirmed by the mass spectrometric analysis. No structurally relevant substitutions were found by NGS in other proteins of rWSN. Bioinformatics algorithms predicted a neutral structural effect of the Ser126Cys mutation. The mrWSN_M1_126S virus generated after the introduction of the reverse Cys126Ser substitution exhibited a similar host-dependent partially filamentous phenotype. We hypothesize that a shortage of some as-yet-undefined cellular components involved in virion budding and membrane scission may result in the appearance of filamentous particles in the case of usually "nonfilamentous" virus strains.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Proteínas Virais/química , Proteínas Virais/genética , Animais , Linhagem Celular , Galinhas , Biologia Computacional , Cães , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/ultraestrutura , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Mutação , Fenótipo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Vírion
6.
Viruses ; 7(12): 6458-75, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26670246

RESUMO

Recruitment of the matrix protein M1 to the assembly site of the influenza virus is thought to be mediated by interactions with the cytoplasmic tail of hemagglutinin (HA). Based on a comprehensive sequence comparison of all sequences present in the database, we analyzed the effect of mutating conserved residues in the cytosol-facing part of the transmembrane region and cytoplasmic tail of HA (A/WSN/33 (H1N1) strain) on virus replication and morphology of virions. Removal of the two cytoplasmic acylation sites and substitution of a neighboring isoleucine by glutamine prevented rescue of infectious virions. In contrast, a conservative exchange of the same isoleucine, non-conservative exchanges of glycine and glutamine, deletion of the acylation site at the end of the transmembrane region and shifting it into the tail did not affect virus morphology and had only subtle effects on virus growth and on the incorporation of M1 and Ribo-Nucleoprotein Particles (RNPs). Thus, assuming that essential amino acids are conserved between HA subtypes we suggest that, besides the two cytoplasmic acylation sites (including adjacent hydrophobic residues), no other amino acids in the cytoplasmic tail of HA are indispensable for virus assembly and budding.


Assuntos
Sequência Conservada , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Montagem de Vírus , Liberação de Vírus , Replicação Viral , Acilação , Animais , Linhagem Celular , Análise Mutacional de DNA , Cães , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Isoleucina/genética , Isoleucina/metabolismo
7.
J Biol Chem ; 289(50): 34978-89, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25349209

RESUMO

S-Acylation of hemagglutinin (HA), the main glycoprotein of influenza viruses, is an essential modification required for virus replication. Using mass spectrometry, we have previously demonstrated specific attachment of acyl chains to individual acylation sites. Whereas the two cysteines in the cytoplasmic tail of HA contain only palmitate, stearate is exclusively attached to a cysteine positioned at the end of the transmembrane region (TMR). Here we analyzed recombinant viruses containing HA with exchange of conserved amino acids adjacent to acylation sites or with a TMR cysteine shifted to a cytoplasmic location to identify the molecular signal that determines preferential attachment of stearate. We first developed a new protocol for sample preparation that requires less material and might thus also be suitable to analyze cellular proteins. We observed cell type-specific differences in the fatty acid pattern of HA: more stearate was attached if human viruses were grown in mammalian compared with avian cells. No underacylated peptides were detected in the mass spectra, and even mutations that prevented generation of infectious virus particles did not abolish acylation of expressed HA as demonstrated by metabolic labeling experiments with [(3)H]palmitate. Exchange of conserved amino acids in the vicinity of an acylation site had a moderate effect on the stearate content. In contrast, shifting the TMR cysteine to a cytoplasmic location virtually eliminated attachment of stearate. Thus, the location of an acylation site relative to the transmembrane span is the main signal for stearate attachment, but the sequence context and the cell type modulate the fatty acid pattern.


Assuntos
Membrana Celular/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/metabolismo , Estearatos/metabolismo , Acilação , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Membrana Celular/virologia , Citoplasma/metabolismo , Citoplasma/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação Puntual , Estrutura Terciária de Proteína , Especificidade por Substrato
8.
J Bioinform Comput Biol ; 12(2): 1441008, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24712535

RESUMO

Interactions between integral membrane proteins hemagglutinin (HA), neuraminidase (NA), M2 and membrane-associated matrix protein M1 of influenza A virus are thought to be crucial for assembly of functionally competent virions. We hypothesized that the amino acid residues located at the interface of two different proteins are under physical constraints and thus probably co-evolve. To predict co-evolving residue pairs, the EvFold ( http://evfold.org ) program searching the (nontransitive) Direct Information scores was applied for large samplings of amino acid sequences from Influenza Research Database ( http://www.fludb.org/ ). Having focused on the HA, NA, and M2 cytoplasmic tails as well as C-terminal domain of M1 (being the less conserved among the protein domains) we captured six pairs of correlated positions. Among them, there were one, two, and three position pairs for HA-M2, HA-M1, and M2-M1 protein pairs, respectively. As expected, no co-varying positions were found for NA-HA, NA-M1, and NA-M2 pairs obviously due to high conservation of the NA cytoplasmic tail. The sum of frequencies calculated for two major amino acid patterns observed in pairs of correlated positions was up to 0.99 meaning their high to extreme evolutionary sustainability. Based on the predictions a hypothetical model of pair-wise protein interactions within the viral envelope was proposed.


Assuntos
Evolução Molecular , Modelos Químicos , Modelos Genéticos , Mapeamento de Interação de Proteínas/métodos , Análise de Sequência de Proteína/métodos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Dados de Sequência Molecular , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...