Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541444

RESUMO

Titanium is the most used material for implant production. To increase its biocompatibility, continuous research on new coatings has been performed by the scientific community. The aim of the present paper is to prepare new coatings on the surfaces of the pure Ti Grade 2 and the Ti6Al4V alloy. Three types of coatings were achieved by applying anodization and chemical vapor deposition (CVD) methods: TiO2 nanotubes (TNTs) were formed by anodization, carbon nanotubes (CNTs) were obtained through a metal-catalyst-free CVD process, and a bilayer coating (TiO2 nanotubes/carbon nanostructures) was prepared via successive anodization and CVD processes. The morphology and structure of the newly developed coatings were characterized using SEM, EDX, AFM, XRD, and Raman spectroscopy. It was found that after anodization, the morphology of the TiO2 layer on pure Ti consisted of a "sponge-like" structure, nanotubes, and nano-rods, while the TNTs layer on the Ti alloy comprised mainly nanotubes. The bilayer coatings on both materials demonstrated different morphologies: the pure Ti metal was covered by a layer of nanotubular and nano-rod TiO2 structures, followed by a dense carbon layer decorated with carbon nanoflakes, and on the Ti alloy, first, a TNTs layer was formed, and then carbon nano-rods were deposited using the CVD method.

2.
Nanomaterials (Basel) ; 13(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36839038

RESUMO

The preparation method can considerably affect the structural, morphological, and gas-sensing properties of mixed-oxide materials which often demonstrate superior photocatalytic and sensing performance in comparison with single-metal oxides. In this work, hybrids of semiconductor nanomaterials based on TiO2 and ZnO were prepared by laser ablation of Zn and Ti plates in water and then tested as chemiresistive gas sensors towards volatile organics (2-propanol, acetaldehyde, ethanol, methanol) and ammonia. An infrared millisecond pulsed laser with energy 2.0 J/pulse and a repetition rate of 5 Hz was applied to Zn and Ti metal targets in different ablation sequences to produce two nano-hybrids (TiO2/ZnO and ZnO/TiO2). The surface chemistry, morphology, crystallinity, and phase composition of the prepared hybrids were found to tune their gas-sensing properties. Among all tested gases, sample TiO2/ZnO showed selectivity to ethanol, while sample ZnO/TiO2 sensed 2-propanol at room temperature, both with a detection limit of ~50 ppm. The response and recovery times were found to be 24 and 607 s for the TiO2/ZnO sensor, and 54 and 50 s for its ZnO/TiO2 counterpart, respectively, towards 100 ppm of the target gas at room temperature.

3.
Materials (Basel) ; 15(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35057198

RESUMO

In the current study, a green method for the preparation of silver nanoparticles (AgNPs) is presented as an alternative to conventional chemical and physical approaches. A biomass of Trichoderma reesei (T. reesei) fungus was used as a green and renewable source of reductase enzymes and metabolites, which are capable of transforming Ag+ ions into AgNPs with a small size (mainly 2-6 nm) and narrow size distribution (2-25 nm). Moreover, extracellular biosynthesis was carried out with a cell-free water extract (CFE) of T. reesei, which allows for facile monitoring of the bioreduction process using UV-Vis spectroscopy and investigation of the effect of experimental conditions on the transformation of Ag+ ions into AgNPs, as well as the simple isolation of as-prepared AgNPs for the study of their size, morphology and antibacterial properties. In continuation to our previous results about the influence of media on T. reesei cultivation, the amount of biomass used for CFE preparation and the concentration of Ag+ ion solution, herein, we present the impact of temperature (4, 20, 30 and 40 °C), agitation and time duration on the biosynthesis of AgNPs and their properties. A high stability of AgNPs in aqueous colloids was observed and attributed to the capping effect of the biomolecules as shown by the zeta potential (-49.0/-51.4 mV) and confirmed by the hydrodynamic size of 190.8/116.8 nm of AgNPs.

4.
Materials (Basel) ; 14(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34361347

RESUMO

To broaden the application of silver nanoparticles (AgNPs), which are well-known antibacterial agents, they are supported on different substrates to prevent aggregation, increase their surface area and antibacterial efficiency, and to be separated from the system more effectively at the end of treatment. To produce nanocomposites that consist of silver nanoparticles on natural and modified zeolites, silver ions (Ag+) were loaded onto zeolite (natural, Na-modified, H-modified) and then thermally reduced to AgNPs. The effect of the exchangeable cations in zeolite on Ag+ uptake, AgNPs formation, size and morphology was investigated by the TEM, SEM, EDX, XPS, UV-vis, XRD and BET methods. The silver amount in the nanocomposites decreased in the following order Na-modified zeolite > natural zeolite > H-modified zeolite. Microscopic techniques showed formation of AgNPs of 1-14 nm on natural and Na-modified zeolite, while the diameter of metal particles on H-modified zeolite was 12-42 nm. Diffuse reflectance UV-vis and XPS methods revealed the presence of both silver ions and AgNPs in the materials indicating that partial reduction of Ag+ ions took place upon heating at 400 °C in air. Additionally, antibacterial properties of the nanocomposites were tested against Escherichia coli, and it was found that Ag-containing composites originating from the Na-modified zeolite demonstrated the highest activity.

5.
ACS Appl Mater Interfaces ; 13(5): 6522-6531, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33502160

RESUMO

The rational combination of plasmonic and all-dielectric concepts within hybrid nanomaterials provides a promising route toward devices with ultimate performance and extended modalities. Spectral matching of plasmonic and Mie-type resonances for such nanostructures can only be achieved for their dissimilar characteristic sizes, thus making the resulting hybrid nanostructure geometry complex for practical realization and large-scale replication. Here, we produced amorphous TiO2 nanospheres decorated and doped with Au nanoclusters via single-step nanosecond-laser irradiation of commercially available TiO2 nanopowders dispersed in aqueous HAuCl4. Fabricated hybrids demonstrate remarkable light-absorbing properties (averaged value ≈96%) in the visible and near-IR spectral range mediated by bandgap reduction of the laser-processed amorphous TiO2 as well as plasmon resonances of the decorating Au nanoclusters. The findings are supported by optical spectroscopy, electron energy loss spectroscopy, transmission electron microscopy, and electromagnetic modeling. Light-absorbing and plasmonic properties of the produced hybrids were implemented to demonstrate catalytically passive SERS biosensor for identification of analytes at trace concentrations and solar steam generator that permitted to increase water evaporation rate by 2.5 times compared with that of pure water under identical 1 sun irradiation conditions.

6.
Environ Res ; 186: 109513, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32305679

RESUMO

This study reports the differences in toxic action between cadmium sulfide (CdS) and zinc sulfide (ZnS) nanoparticles (NPs) prepared by recently developed xanthate-mediated method. The aquatic toxicity of the synthesized NPs on four marine microalgae species was explored. Growth rate, esterase activity, membrane potential, and morphological changes of microalgae cells were evaluated using flow cytometry and optical microscopy. CdS and ZnS NPs demonstrated similar level of general toxicity and growth-rate inhibition to all used microalgae species, except the red algae P. purpureum. More specifically, CdS NPs caused higher inhibition of growth rate for C. muelleri and P. purpureum, while ZnS NPs were more toxic for A. ussuriensis and H. akashiwo species. Our findings suggest that the sensitivity of different microalgae species to CdS and ZnS NPs depends on the chemical composition of NPs and their ability to interact with the components of microalgal cell-wall. The red microalga was highly resistant to ZnS NPs most likely due to the presence of phycoerythrin proteins in the outer membrane bound Zn2+ cations defending their cells from further toxic influence. The treatment with CdS NPs caused morphological changes and biochemical disorder in all tested microalgae species. The toxicity of CdS NPs is based on their higher photoactivity under visible light irradiation and lower dissociation in water, which allows them to generate more reactive oxygen species and create a higher risk of oxidative stress to aquatic organisms. The results of this study contribute to our understanding of the parameters affecting the aquatic toxicity of semiconductor NPs and provide a basis for further investigations.


Assuntos
Microalgas , Nanopartículas , Compostos de Cádmio , Nanopartículas/toxicidade , Sulfetos/toxicidade , Compostos de Zinco
7.
Materials (Basel) ; 13(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033417

RESUMO

Hybrids of semiconductor nanomaterials often demonstrate properties that are superior to those of their components. In this study, we prepared hybrid nanomaterials of TiO2 and ZnO, which are among the most actively studied semiconductors, by means of millisecond-pulsed laser and analyzed how their morphology, particle size, and surface composition depend on preparation conditions. A series of nanomaterials were obtained via sequentially ablating Zn and Ti metal plates (in different sequences) in water, while laser pulses of lower (2.0 J/pulse) and higher (5.0 J/pulse) energy were applied. The properties of laser-produced hybrid TiO2-ZnO nanomaterials were shown to be governed by experimental conditions such as laser pulse width, pulse peak power, and reaction media (either pure water or colloid with nanoparticles). The morphology revealed nanospheres of TiO2 that decorate nanorods of ZnO or flower-like aggregates of zinc oxide. Intriguingly, after extended ablation time, titania was found to be self-doped with Ti3+ and Ti2+ ions, and the contribution of lower oxidation states of titanium could be controlled by the applied laser pulse energy. The physicochemical characteristics of hybrid nanomaterials were compared with pure ZnO and TiO2 prepared under the same laser conditions.

8.
Materials (Basel) ; 13(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906355

RESUMO

Molecular precursors are suitable starting compounds for preparation of semiconductor nanoparticles (NPs), which allow for control of atomic ratio, composition, monodispersity, and particle size of nanoscaled metal sulfides/oxides. In the present study, we carried out a one-pot synthesis of ZnS NPs in aqueous triethanolamine medium at room temperature, from molecular precursor zinc xanthate as a source of both Zn2+ and S2- ions. Furthermore, we compared the products obtained from zinc ethylxanthate (Zn(C2H5OCS2)2) and zinc amylxanthate (Zn(C5H11OCS2)2). The as-prepared ZnS NPs were found to crystallize in cubic phase, which usually forms at low temperatures, with the dimension dependent on the xanthate precursor used. The long carbon-chain xanthate Zn(C5H11OCS2)2 gave spherically shaped NPs with an average diameter of 19 nm, while the NPs that originated from zinc ethylxanthate had a mean size of ~26 nm. Both nanomaterials had surface sulfur vacancies that extended their absorption spectra toward the visible region and reduced the band gap. This allowed both materials to demonstrate photocatalytic performance under visible-light irradiation. Photodegradation of methylene blue over newly prepared ZnS NPs was tested under visible light, demonstrating efficiency of 50%-60% after 180 min.

9.
Materials (Basel) ; 12(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614575

RESUMO

In this paper, we report a new, simple method for the synthesis of CdS and ZnS nanoparticles (NPs) prepared in a basic aqueous medium using metal xanthate as the sulfur source. The structure, morphology, size distribution, optical band gap, and photocatalytic properties of the newly obtained nanomaterials were investigated by UV-Vis spectroscopy, X-ray diffraction, and transmission electron microscopy. The results show that both CdS and ZnS crystallized in cubic phase and formed NPs with average sizes of 7.0 and 4.2 nm for CdS and ZnS, respectively. A blue shift of UV-Vis absorbance band and higher energy band gap values were observed for both materials in comparison with their bulk counterparts, which is in accordance with the quantum confinement effect. The as-prepared nanomaterials were tested in visible-light driven photocatalytic decomposition of methylene blue (MB). After irradiation for 180 min, the degradation rate of MB with a concentration of 8 × 10-6 mol/L mixed with a photocatalyst (CdS or ZnS, both 10 mg in 100 mL solution of MB) was found to be 72% and 61%, respectively. The CdS NPs showed better photocatalytic activity than ZnS, which could be explained by their lower energy band gap and thus the ability to absorb light more efficiently when activated by visible-light irradiation.

10.
Materials (Basel) ; 12(18)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540464

RESUMO

Engineering surface structure of catalysts is an efficient way towards high catalytic performance. Here, we report on the synthesis of regular iridium nanospheres (Ir NSs), with abundant atomic steps prepared by a laser ablation technique. Atomic steps, consisting of one-atom level covering the surface of such Ir NSs, were observed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The prepared Ir NSs exhibited remarkably enhanced activity both for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acidic medium. As a bifunctional catalyst for overall water splitting, they achieved a cell voltage of 1.535 V @ 10 mA/cm2, which is much lower than that of Pt/C-Ir/C couple (1.630 V @ 10 mA/cm2).

11.
Materials (Basel) ; 12(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626000

RESUMO

Here, we report on ZnO nanoparticles (NPs) generated by nanosecond pulsed laser (Nd:YAG, 1064 nm) through ablation of metallic Zn target in water and air and their comparative analysis as potential nanomaterials for biomedical applications. The prepared nanomaterials were carefully characterized in terms of their structure, composition, morphology and defects. It was found that in addition to the main wurtzite ZnO phase, which is conventionally prepared and reported by others, the sample laser generated in air also contained some amount of monoclinic zinc hydroxynitrate. Both nanomaterials were then used to modify model wound dressings based on biodegradable poly l-lactic acid. The as-prepared model dressings were tested as biomedical materials with bactericidal properties towards S. aureus and E. coli strains. The advantages of the NPs prepared in air over their counterparts generated in water found in this work are discussed.

12.
Materials (Basel) ; 11(7)2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970798

RESUMO

This work aimed to prepare nanostructures of ZnO with various lasers, testing them as photocatalysts, and comparing their morphology and activity in the degradation of organic pollutants in aqueous media. ZnO nanospheres (ns-ZnO) and ZnO nanorods (ms-ZnO) were prepared via the laser ablation of a Zn metal plate in water using nanosecond- and millisecond-pulsed lasers, respectively. The obtained materials were characterized using a set of optical, structural, and surface-science techniques, such as UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Under visible-light irradiation, both nanostructures were found to be catalytically active toward the oxidation of methylene blue, which was used as a model compound. The ZnO nanorods fabricated with the millisecond laser showed better photocatalytic performance than their spherically shaped counterparts obtained by means of the nanosecond laser, which could be assigned to a larger number of defects on the ms-ZnO surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...