Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Minerva Surg ; 76(5): 407-414, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33890440

RESUMO

BACKGROUND: Immunonutrition has gained increasing interest over years, enough to be recommended in several international guidelines and to be included in the ERAS protocol for colorectal surgery. Although clinical advantages have been proved for malnourished cancer-affected patients, its role is more controversial in other settings. We evaluated the impact of immunonutrition in major colorectal elective surgery for benign and malignant diseases, regardless of the preoperative nutritional status. METHODS: We conducted a single center retrospective analysis of a database of patients who underwent elective major colon-rectal surgery for benign and malignant diseases between January 2018 and February 2020. In January 2019 we started a protocol to define which patients should receive preoperative immunonutrition, regardless of their nutritional status. We compared early postoperative outcomes and laboratory data of this group (IMN) to those of patients who met all the characteristics to be included in the protocol, but who did not receive immunonutrition (CTRL). RESULTS: The IMN group showed significantly lower total leukocytes and neutrophils values and a lower pathological leukocytosis rate on 1st postoperative day compared to the CTRL group (P=0.004). Although differences in early postoperative clinical outcomes were not significant, patients belonging to the IMN group needed less postoperative antibiotic treatment (P=0.047). CONCLUSIONS: Immunonutrition could affect granulocytopoiesis and neutrophils recruitment in damaged tissues. This could lead to better and faster tissue healing and, consequently, to a reduction in postoperative complications even in normo-nourished patients. The lower need for antibiotic treatment could reflect a reduced susceptibility to postoperative infections.


Assuntos
Cirurgia Colorretal , Suplementos Nutricionais , Procedimentos Cirúrgicos do Sistema Digestório , Sistema Imunitário , Inflamação , Procedimentos Cirúrgicos Eletivos , Humanos , Cuidados Pré-Operatórios , Estudos Retrospectivos
2.
Methods Mol Biol ; 2270: 61-76, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33479893

RESUMO

IL-10 is the best known and most studied anti-inflammatory cytokine and, in the last 20 years, it has acquired even greater fame as it has been associated with the regulatory phenotype of B cells. Indeed, although great efforts have been made to find a unique marker, to date IL-10 remains the main way to follow both murine and human regulatory B cells, hence the need of precise and reproducible methods to identify and purify IL-10-producing B cells for both functional and molecular downstream assays. In this chapter, we present our protocols to isolate these cells from the murine spleen and peritoneum and from human peripheral blood. Since the production of IL-10 by B cells is not only a weapon to counteract the adverse effect of pro-inflammatory cytokines but also a response to cellular activation, we focused on those B cells that are prone to IL-10 production and detectable following a short-term stimulation with phorbol-12-myristate-13-acetate, ionomycin, and lipopolysaccharide (murine system) or CpG (human system).


Assuntos
Subpopulações de Linfócitos B/citologia , Linfócitos B Reguladores/citologia , Separação Celular/métodos , Animais , Subpopulações de Linfócitos B/imunologia , Citocinas/imunologia , Expressão Gênica/genética , Expressão Gênica/imunologia , Humanos , Interleucina-10/metabolismo , Ionomicina/farmacologia , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/imunologia , Camundongos , Ésteres de Forbol/farmacologia , Baço/citologia , Acetato de Tetradecanoilforbol/farmacologia
3.
Methods Mol Biol ; 2270: 323-339, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33479907

RESUMO

Epigenetic studies are becoming increasingly common in the immunology field thanks to the support of cutting edge technology and to their potential of providing a large amount of data at the single cell level. Moreover, epigenetic modifications were shown to play a role in autoimmune/inflammatory disorders, paving the way for the possibility of using the results of epigenetic studies for therapeutic purposes. In recent years, epigenetic marks such as DNA methylation, histone modifications and nucleosome positioning were shown to regulate B cell fate and function during an immune response, but very little has been done in the context of one of the most recently discovered B cell subsets, that is regulatory B cells. Although no consensus has yet been found on the identity of these immunosuppressive B cells, the role of the IL-10 cytokine is consolidated, both in the murine and human setting. In this chapter we will focus on the analysis of the methylation profile of a gene of interest and we will specifically describe cloning and pyrosequencing bisulphite sequencing PCR (BSP). Given the specific context, we will provide tips and tricks for the analysis of the il-10 gene locus. Nonetheless, the methods presented are valid for the study of any gene of interest.


Assuntos
Linfócitos B Reguladores/metabolismo , Linfócitos B/fisiologia , Metilação de DNA , Interleucina-10/genética , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B Reguladores/imunologia , Diferenciação Celular/genética , Ilhas de CpG , Citocinas/genética , Epigênese Genética , Epigenômica/métodos , Humanos , Interleucina-10/imunologia , Reação em Cadeia da Polimerase/métodos
4.
Eur J Immunol ; 51(2): 445-458, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32920851

RESUMO

B lymphocytes are among the cell types whose effector functions are modulated by mast cells (MCs). The B/MC crosstalk emerged in several pathological settings, notably the colon of inflammatory bowel disease (IBD) patients is a privileged site in which MCs and IgA+ cells physically interact. Herein, by inducing conditional depletion of MCs in red MC and basophil (RMB) mice, we show that MCs control B cell distribution in the gut and IgA serum levels. Moreover, in dextran sulfate sodium (DSS)-treated RMB mice, the presence of MCs is fundamental for the enlargement of the IgA+ population in the bowel and the increase of systemic IgA production. Since both conventional B-2 and peritoneal-derived B cells populate the intestine and communicate with MCs in physiological conditions and during inflammation, we further explored this interplay through the use of co-cultures. We show that MCs finely regulate different aspects of splenic B cell biology while peritoneal B cells are unresponsive to the supporting effects provided by MCs. Interestingly, peritoneal B cells induce a pro-inflammatory skewing in MCs, characterized by increased ST2 and TNF-α expression. Altogether, this study uncovers the versatility of the B/MC liaison and highlights key aspects for the resolution of intestinal inflammation.


Assuntos
Linfócitos B/metabolismo , Colo/imunologia , Imunoglobulina A/imunologia , Mucosa Intestinal/imunologia , Mastócitos/imunologia , Animais , Colite/imunologia , Colo/microbiologia , Sulfato de Dextrana/imunologia , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/imunologia
5.
Eur J Immunol ; 49(8): 1213-1225, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31034584

RESUMO

Among the family of regulatory B cells, the subset able to produce interleukin-10 (IL-10) is the most studied, yet its biology is still a matter of investigation. The DNA methylation profiling of the il-10 gene locus revealed a novel epigenetic signature characterizing murine B cells ready to respond through IL-10 synthesis: a demethylated region located 4.5 kb from the transcription starting site (TSS), that we named early IL10 regulatory region (eIL10rr). This feature allows to distinguish B cells that are immediately prone and developmentally committed to IL-10 production from those that require a persistent stimulation to exert an IL-10-mediated regulatory function. These late IL-10 producers are instead characterized by a delayed IL10 regulatory region (dIL10rr), a partially demethylated DNA portion located 9 kb upstream from the TSS. A demethylated region was also found in human IL-10-producing B cells and, very interestingly, in some B-cell malignancies, such as chronic lymphocytic leukemia and mantle cell lymphoma, characterized by an immunosuppressive microenvironment. Our findings define murine and human regulatory B cells as an epigenetically controlled functional state of mature B cell subsets and open a new perspective on IL-10 regulation in B cells in homeostasis and disease.


Assuntos
Subpopulações de Linfócitos B/fisiologia , Linfócitos B Reguladores/fisiologia , Interleucina-10/metabolismo , Leucemia Linfocítica Crônica de Células B/genética , Linfoma de Célula do Manto/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Diferenciação Celular , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Tolerância Imunológica , Imunidade Humoral , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
6.
Immunol Rev ; 282(1): 35-46, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29431204

RESUMO

Mast cells (MCs) are derived from committed precursors that leave the hematopoietic tissue, migrate in the blood, and colonize peripheral tissues where they terminally differentiate under microenvironment stimuli. They are distributed in almost all vascularized tissues where they act both as immune effectors and housekeeping cells, contributing to tissue homeostasis. Historically, MCs were classified into 2 subtypes, according to tryptic enzymes expression. However, MCs display a striking heterogeneity that reflects a complex interplay between different microenvironmental signals delivered by various tissues, and a differentiation program that decides their identity. Moreover, tissue-specific MCs show a trained memory, which contributes to shape their function in a specific microenvironment. In this review, we summarize the current state of our understanding of MC heterogeneity that reflects their different tissue experiences. We describe the discovery of unique cell molecules that can be used to distinguish specific MC subsets in vivo, and discuss how the improved ability to recognize these subsets provided new insights into the biology of MCs. These recent advances will be helpful for the understanding of the specific role of individual MC subsets in the control of tissue homeostasis, and in the regulation of pathological conditions such as infection, autoimmunity, and cancer.


Assuntos
Mastócitos/fisiologia , Triptases/metabolismo , Animais , Diferenciação Celular , Microambiente Celular , Homeostase , Humanos , Imunomodulação , Fenótipo
7.
Oncoimmunology ; 6(8): e1336593, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919998

RESUMO

One of the most fascinating aspects of the immune system is its dynamism, meant as the ability to change and readapt according to the organism needs. Following an insult, we assist to the spontaneous organization of different immune cells which cooperate, locally and at distance, to build up an appropriate response. Throughout tumor progression, adaptations within the systemic tumor environment, or macroenvironment, result in the promotion of tumor growth, tumor invasion and metastasis to distal organs, but also to dramatic changes in the activity and composition of the immune system. In this work, we show the changes of the B-cell arm of the immune system following tumor progression in the ApcMin/+ model of colorectal cancer. Tumor macroenvironment leads to an increased proportion of total and IL-10-competent B cells in draining LNs while activates a differentiation route that leads to the expansion of IgA+ lymphocytes in the spleen and peritoneum. Importantly, serum IgA levels were significantly higher in ApcMin/+ than Wt mice. The peculiar involvement of IgA response in the adenomatous transformation had correlates in the gut-mucosal compartment where IgA-positive elements increased from normal mucosa to areas of low grade dysplasia while decreasing upon overt carcinomatous transformation. Altogether, our findings provide a snapshot of the tumor education of B lymphocytes in the ApcMin/+ model of colorectal cancer. Understanding how tumor macroenvironment affects the differentiation, function and distribution of B lymphocytes is pivotal to the generation of specific therapies, targeted to switching B cells to an anti-, rather than pro-, tumoral phenotype.

9.
Trends Immunol ; 38(9): 648-656, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28462845

RESUMO

Mast cells are evolutionarily ancient cells, endowed with a unique developmental, phenotypic, and functional plasticity. They are resident cells that participate in tissue homeostasis by constantly sampling the microenvironment. As a result of their large repertoire of receptors, they can respond to multiple stimuli and selectively release different types and amounts of mediator. Here, we present and discuss the recent mast cell literature, focusing on studies that demonstrate that mast cells are more than a switch that is turned 'off' when in the resting state and 'on' when in the degranulating state. We propose a new vision of mast cells in which, by operating in a 'rheostatic' manner, these cells finely modulate not only immune responses, but also the pathogenesis of several inflammatory disorders, including infection, autoimmunity, and cancer.


Assuntos
Imunidade Adaptativa , Microambiente Celular , Homeostase , Imunidade Inata , Mastócitos/imunologia , Animais , Humanos , Imunomodulação , Especificidade de Órgãos , Tolerância a Antígenos Próprios
10.
Eur J Immunol ; 46(5): 1105-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27152892

RESUMO

It is well established that full activation of T cells to recognize a specific antigen requires additional signals. These secondary signals are generated by the interaction of costimulatory molecules expressed on APCs. Classical APCs include DCs, macrophages, Langerhans cells, and B cells. However, in recent years, several haematopoietic and nonhaematopoietic cells have been described to express MHC class II antigens and, in appropriate conditions, costimulatory molecules. In this issue, Suurmond et al. [Eur. J. Immunol. 2016. 46: 1132-1141] show, for the first time, that human mast cells not only express costimulatory molecules of the TNF-receptor and CD28 families, but can also costimulate T cells through a yet-to-be-defined CD28-independent interaction.


Assuntos
Antígeno B7-1/imunologia , Ativação Linfocitária/imunologia , Antígenos CD , Linfócitos B/imunologia , Antígenos CD28/imunologia , Humanos , Mastócitos/imunologia , Linfócitos T/imunologia
11.
Eur J Pharmacol ; 778: 84-9, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25941086

RESUMO

A diversity of immune mechanisms have evolved to protect normal tissues from infection, but from immune damage too. Innate cells, as well as adaptive cells, are critical contributors to the correct development of the immune response and of tissue homeostasis. There is a dynamic "cross-talk" between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage as well as the development of the immune response. Mast cells have shown a great plasticity, modifying their behavior at different stages of immune response through interaction with effector and regulatory populations of adaptive immunity. Understanding the interplays among T effectors, regulatory T cells, B cells and regulatory B cells with mast cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immune-modulator and -suppressor elements in the innate and adaptive immune system.


Assuntos
Imunidade Adaptativa , Linfócitos B Reguladores/citologia , Comunicação Celular , Imunidade Inata , Mastócitos/citologia , Linfócitos T Reguladores/citologia , Animais , Humanos
12.
Cancer Immunol Res ; 3(1): 85-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25351848

RESUMO

Inflammation plays crucial roles at different stages of tumor development and may lead to the failure of immune surveillance and immunotherapy. Myeloid-derived suppressor cells (MDSC) are one of the major components of the immune-suppressive network that favors tumor growth, and their interaction with mast cells is emerging as critical for the outcome of the tumor-associated immune response. Herein, we showed the occurrence of cell-to-cell interactions between MDSCs and mast cells in the mucosa of patients with colon carcinoma and in the colon and spleen of tumor-bearing mice. Furthermore, we demonstrated that the CT-26 colon cancer cells induced the accumulation of CD11b(+)Gr1(+) immature MDSCs and the recruitment of protumoral mast cells at the tumor site. Using ex vivo analyses, we showed that mast cells have the ability to increase the suppressive properties of spleen-derived monocytic MDSCs, through a mechanism involving IFNγ and nitric oxide production. In addition, we demonstrated that the CD40:CD40L cross-talk between the two cell populations is responsible for the instauration of a proinflammatory microenvironment and for the increase in the production of mediators that can further support MDSC mobilization and tumor growth. In light of these results, interfering with the MDSC:mast cell axis could be a promising approach to abrogate MDSC-related immune suppression and to improve the antitumor immune response.


Assuntos
Comunicação Celular , Neoplasias do Colo/terapia , Mastócitos/imunologia , Células Mieloides/imunologia , Microambiente Tumoral/imunologia , Animais , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Linhagem Celular Tumoral , Humanos , Inflamação/metabolismo , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Óxido Nítrico/metabolismo
13.
Mol Immunol ; 63(1): 94-103, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24671125

RESUMO

It has been proven that both resting and activated mast cells (MCs) and basophils are able to induce a significant increase in proliferation and survival of naïve and activated B cells, and their differentiation into antibody-producing cells. The immunological context in which this regulation occurs is of particular interest and the idea that these innate cells induce antibody class switching and production is increasingly gaining ground. This direct role of MCs and basophils in acquired immunity requires cell to cell contact as well as soluble factors and exosomes. Here, we review our current understanding of the interaction between B cells and MCs or basophils as well as the evidence supporting B lymphocyte-MC/basophil crosstalk in pathological settings. Furthermore, we underline the obscure aspects of this interaction that could serve as important starting points for future research in the field of MC and basophil biology in the peculiar context of the connection between innate and adaptive immunity.


Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Basófilos/imunologia , Mastócitos/imunologia , Neoplasias/imunologia , Comunicação Celular/imunologia , Diferenciação Celular , Proliferação de Células , Citocinas/imunologia , Exossomos/imunologia , Humanos , Mastócitos/citologia , Neovascularização Patológica/imunologia
14.
J Immunol ; 193(9): 4568-79, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25267976

RESUMO

The discovery of B cell subsets with regulatory properties, dependent on IL-10 production, has expanded our view on the mechanisms that control inflammation. Regulatory B cells acquire the ability to produce IL-10 in a stepwise process: first, they become IL-10 competent, a poised state in which B cells are sensitive to trigger signals but do not actually express the Il-10 gene; then, when exposed to appropriate stimuli, they start producing IL-10. Even if the existence of IL-10-competent B cells is now well established, it is not yet known how different immune cell types cross talk with B cells and affect IL-10-competent B cell differentiation and expansion. Mast cells (MCs) contribute to the differentiation and influence the effector functions of various immune cells, including B lymphocytes. In this study, we explored whether MCs could play a role in the expansion of IL-10-competent B cells and addressed the in vivo relevance of MC deficiency on the generation of these cells. We show that MCs can expand IL-10-competent B cells, but they do not directly induce IL-10 production; moreover, the absence of MCs negatively affects IL-10-competent B cell differentiation. Noteworthy, our findings reveal that the CD40L/CD40 axis plays a significant role in MC-driven expansion of IL-10-competent B cells in vitro and highlight the importance of MC CD40L signaling in the colon.


Assuntos
Subpopulações de Linfócitos B/imunologia , Interleucina-10/biossíntese , Mastócitos/imunologia , Animais , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/metabolismo , Antígenos CD40/metabolismo , Ligante de CD40/genética , Ligante de CD40/metabolismo , Diferenciação Celular , Exossomos/metabolismo , Feminino , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Imunofenotipagem , Ativação Linfocitária , Mastócitos/metabolismo , Camundongos , Camundongos Knockout , Fenótipo
15.
Methods Mol Biol ; 1190: 163-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25015280

RESUMO

Many immunological processes are contextually controlled by complex interactions among different cell types. Several studies have shown that B cells produce the immune regulatory cytokine IL-10 in response to different external stimuli but also to immune-mediated signals. Endogenous signals that derive from the cross talk between B lymphocytes and other cells of the immune system can affect IL-10 production by B cells in both physiological and pathological conditions. With the aim to provide a guide for the study of how partner cells can induce IL-10-producing B cells, here we describe the protocols to investigate IL-10 production at a single cell level in a dendritic cell-B cell coculture in vitro system. These methods are a proof of concept that can be easily extrapolated and adapted to the study of the interaction between B cells and other immune cell types.


Assuntos
Linfócitos B Reguladores/citologia , Comunicação Celular , Técnicas de Cocultura/métodos , Células Dendríticas/citologia , Interleucina-10/imunologia , Animais , Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/metabolismo , Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Separação Celular/métodos , Células Cultivadas , Técnicas de Cocultura/instrumentação , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Interleucina-10/análise , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase/métodos , Fixação de Tecidos/métodos , Transcrição Gênica
16.
Mol Immunol ; 62(2): 266-76, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24970737

RESUMO

IL-10 is an immune suppressive cytokine with pleiotropic effects on B cell biology. IL-10 production has a pivotal role for the regulatory suppressive functions that B cells exert in many physiological and pathological settings. Several exogenous stimuli and endogenous immune mediators can trigger IL-10-producing B cell maturation. To clarify and gain a better insight into the mechanisms of IL-10 production by B cells, we first compared the effects of LPS, CpG, agonistic CD40 mAb and BAFF on IL-10 production, and then we investigated the signal transduction mechanisms responsible for these responses. While infectious/danger stimuli determine the rapid production and release of IL-10 by B cells, a limited subset of CD40-poised, IL-10-competent B cells produce IL-10 in response to a later antigenic or infectious signal. Although BAFF is able to induce a similar subset of IL-10-competent B cells, these cells do not similarly respond to the same antigenic or infectious signals. Importantly, by using specific inhibitors of the MAP kinase pathways, we found that while il-10 gene expression triggered by the TLR agonists LPS and CpG is strongly dependent on p38 activity, the induction of IL-10 competence in CD40-activated B cells does not depend on ERK1/2, p38 or JNK pathways.


Assuntos
Linfócitos B/imunologia , Fatores Imunológicos/imunologia , Interleucina-10/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Animais , Feminino , Lipopolissacarídeos/imunologia , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia
17.
Front Immunol ; 3: 120, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22654879

RESUMO

Mast cells (MCs) are currently recognized as effector cells in many settings of the immune response, including host defense, immune regulation, allergy, chronic inflammation, and autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spectrum of preformed or newly synthesized biologically active products with pro-inflammatory, anti-inflammatory and/or immunosuppressive properties, in response to multiple signals. Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide variety of membrane molecules involved in cell-cell or cell-extracellular-matrix interaction. The delivery of co-stimulatory signals allows MC to specifically communicate with immune cells belonging to both innate and acquired immunity, as well as with non-immune tissue-specific cell types. This article reviews and discusses the evidence that MC membrane-expressed molecules play a central role in regulating MC priming and activation and in the modulation of innate and adaptive immune response not only against host injury, but also in peripheral tolerance and tumor-surveillance or -escape. The complex expression of MC surface molecules may be regarded as a measure of connectivity, with altered patterns of cell-cell interaction representing functionally distinct MC states. We will focalize our attention on roles and functions of recently discovered molecules involved in the cross-talk of MCs with other immune partners.

18.
N Biotechnol ; 29(4): 477-84, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22226921

RESUMO

Recombinant proteins, in particular antibodies, have become fundamental in biomedical research where they are used in numerous therapeutic and diagnostic applications. For this reason there is an increasing demand for quick and economical production systems for recombinant proteins in mammalian cells.


Assuntos
Vetores Genéticos/metabolismo , Anticorpos de Cadeia Única/biossíntese , Animais , Formação de Anticorpos , Células CHO , Cricetinae , Cricetulus , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Anticorpos de Cadeia Única/genética
19.
Mol Immunol ; 48(1-3): 1-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20950861

RESUMO

The adaptive immune system has developed several highly effective mechanisms in order to avoid excessive or unwanted reactions and promote resolution of immune activation. An emerging, significant body of evidence indicates that B cells can actively modulate immune responses by mechanisms that do not directly involve the production of antibodies. B cells appear to have the capacity to both induce and suppress immune effector mechanisms and they exert these functions both by contact-dependent interactions and through the secretion of cytokines. In this review we will focus on the regulatory suppressive function of several recently described B cell populations, functionally defined "regulatory B cells" or Breg cells. We will first outline the evidence that has led to their identification and then we will summarize current hypotheses on their ontogeny and possible lineage relationship.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Animais , Subpopulações de Linfócitos B/citologia , Linfócitos B/citologia , Humanos , Ativação Linfocitária/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...