Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341691

RESUMO

A new free-energy functional is proposed for inhomogeneous associating fluids. The general formulation of Wertheim's thermodynamic perturbation theory is considered as the starting point of the derivation. We apply the hypotheses of the statistical associating fluid theory in the classical density functional theory (DFT) framework to obtain a tractable expression of the free-energy functional for inhomogeneous associating fluids. Specific weighted functions are introduced in our framework to describe association interactions for a fluid under confinement. These weighted functions have a mathematical structure similar to the weighted densities of the fundamental-measure theory (i.e., they can be expressed as convolution products) such that they can be efficiently evaluated with Fourier transforms in a 3D space. The resulting free-energy functional can be employed to determine the microscopic structure of inhomogeneous associating fluids of arbitrary 3D geometry. The new model is first compared with Monte Carlo simulations and previous versions of DFT for a planar hard wall system in order to check its consistency in a 1D case. As an example of application in a 3D configuration, we then investigate the extreme confinement of an associating hard-sphere fluid inside an anisotropic open cavity with a shape that mimics a simplified model of zeolite. Both the density distribution and the corresponding molecular bonding profile are given, revealing complementary information to understand the structure of the associating fluid inside the cavity network. The impact of the degree of association on the preferential positions of the molecules inside the cavity is investigated as well as the competition between association and steric effect on adsorption.

2.
Environ Pollut ; 323: 121229, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804146

RESUMO

The mass and volume concentration of nanoplastics is extremely low, but incredibly high in terms of surface area; this is expected to increase their toxicity through the ab/adsorption and transport of chemical co-pollutants such as trace metals. In this context, we studied the interactions between nanoplastics model materials functionalized with carboxylated groups, with either smooth or raspberry-like surface morphologies, and copper as representative of trace metals. For this purpose, a new methodology, using two complementary surface analysis techniques: Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS) was developed. In addition, inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the total mass of sorbed metal on the nanoplastics. This innovative analytical approach from the top surface to the core of nanoplastics demonstrated not only the interactions with copper at the surface level, but also the ability of nanoplastics to absorb metal at their core. Indeed, after 24 h of exposition, the copper concentration at the nanoplastic surface remained constant due to saturation whereas the copper concentration inside the nanoplastic keeps increasing with the time. The sorption kinetic was evaluated to increase with the density of charge of the nanoplastic and the pH. This study confirmed the ability of nanoplastics to act as metal pollutant carriers by both adsorption and absorption phenomena.


Assuntos
Microplásticos , Oligoelementos , Cobre/química , Análise Espectral , Espectrometria de Massa de Íon Secundário/métodos , Adsorção
3.
Nanomaterials (Basel) ; 11(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062927

RESUMO

A set of three commercial zeolites (13X, 5A, and 4A) of two distinct shapes have been characterized: (i) pure zeolite powders and (ii) extruded spherical beads composed of pure zeolite powders and an unknown amount of binder used during their preparation process. The coupling of gas porosimetry experiments using argon at 87 K and CO2 at 273 K allowed determining both the amount of the binder and its effect on adsorption properties. It was evidenced that the beads contain approximately 25 wt% of binder. Moreover, from CO2 adsorption experiments at 273 K, it could be inferred that the binder present in both 13X and 5A zeolites does not interact with the probe molecule. However, for the 4A zeolite, pore filling pressures were shifted and strong interaction with CO2 was observed leading to irreversible adsorption of the probe. These results have been compared to XRD, IR spectroscopy, and ICP-AES analysis. The effect of the binder in shaped zeolite bodies can thus have a crucial impact on applications in adsorption and catalysis.

4.
J Chem Phys ; 140(13): 134707, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24712808

RESUMO

As a first step of an ongoing study of thermodynamic properties and adsorption of complex fluids in confined media, we present a new theoretical description for spherical monomers using the Statistical Associating Fluid Theory for potential of Variable Range (SAFT-VR) and a Non-Local Density Functional Theory (NLDFT) with Weighted Density Approximations (WDA). The well-known Modified Fundamental Measure Theory is used to describe the inhomogeneous hard-sphere contribution as a reference for the monomer and two WDA approaches are developed for the dispersive terms from the high-temperature Barker and Henderson perturbation expansion. The first approach extends the dispersive contributions using the scalar and vector weighted densities introduced in the Fundamental Measure Theory (FMT) and the second one uses a coarse-grained (CG) approach with a unique weighted density. To test the accuracy of this new NLDFT/SAFT-VR coupling, the two versions of the theoretical model are compared with Grand Canonical Monte Carlo (GCMC) molecular simulations using the same molecular model. Only the version with the "CG" approach for the dispersive terms provides results in excellent agreement with GCMC calculations in a wide range of conditions while the "FMT" extension version gives a good representation solely at low pressures. Hence, the "CG" version of the theoretical model is used to reproduce methane adsorption isotherms in a Carbon Molecular Sieve and compared with experimental data after a characterization of the material. The whole results show an excellent agreement between modeling and experiments. Thus, through a complete and consistent comparison both with molecular simulations and with experimental data, the NLDFT/SAFT-VR theory has been validated for the description of monomers.

5.
J Phys Chem B ; 115(31): 9618-25, 2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21718009

RESUMO

This work is dedicated to the simultaneous application of the gradient theory of fluid interfaces and Monte Carlo molecular simulations for the description of the interfacial behavior of the methane/water mixture. Macroscopic (interfacial tension, adsorption) and microscopic (density profiles, interfacial thickness) properties are investigated. The gradient theory is coupled in this work with the SAFT-VR Mie equation of state. The results obtained are compared with Monte Carlo simulations, where the fluid interface is explicitly considered in biphasic simulation boxes at both constant pressure and volume (NPT and NVT ensembles), using reliable united atom molecular models. On one hand, both methods provide very good estimations of the interfacial tension of this mixture over a broad range of thermodynamic conditions. On the other hand, microscopic properties computed with both gradient theory and MC simulations are in very good agreement with each other, which confirms the consistency of both approaches. Interfacial tension minima at high pressure and prewetting transitions in the vicinity of saturation conditions are also investigated.

6.
J Phys Chem B ; 114(34): 11110-6, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20698517

RESUMO

The Gradient Theory of fluid interfaces is for the first time combined with the SAFT-VR Mie EOS to model the interfacial properties of the water/CO(2) mixture. As a preliminary test of the performance of the coupling between both theories, liquid-vapor interfacial properties of pure water have been determined. The complex temperature dependence of the surface tension of water can be accurately reproduced, and the interfacial thickness is in good agreement with experimental data and simulation results. The water/CO(2) mixture presents several types of interfaces as the liquid water may be in contact with gaseous, liquid, or supercritical CO(2). Here, the interfacial tension of the water/CO(2) mixture is modeled accurately by the gradient theory with a unique value of the crossed influence parameter over a broad range of thermodynamic conditions. The interfacial density profiles show a systematic adsorption of CO(2) in the interface. Moreover, when approaching the saturation pressure of CO(2), a prewetting transition is highlighted. The adsorption isotherm of CO(2) is computed as well in the case of a gas/liquid interface and compared with experimental data. The good agreement obtained is an indirect proof of the consistency of interfacial density profiles computed with the gradient theory for this mixture and confirms that the gradient theory is suitable and reliable to describe the microstructure of complex fluid interfaces.

7.
J Chem Phys ; 130(10): 104704, 2009 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-19292546

RESUMO

In a first part, interfacial properties of a pure monoatomic fluid interacting through the Mie n-6 potential (n=8, 10, 12, and 20) have been studied using extensive molecular simulations. Monte Carlo and molecular dynamics simulations have been employed, using, respectively, the test area approach and the mechanic route. In order to yield reference values, simulations have been performed with a cutoff radius equal to 10sigma, which is shown to be sufficient to avoid long range corrections. It is shown that both approaches provide results consistent with each other. Using the molecular simulations results, it is demonstrated that a unique scaling law is able to provide an accurate estimation of the surface tension whatever the repulsive exponent n, even far from the critical point. Furthermore, it is shown that the surface tension of the Mie n-6 fluid is as well accurately described by a unique Parachor's law. Density profiles are shown to be well represented by the tanh mean field profile, with slight deviations for the lowest temperatures and the smallest n. In addition, the interfacial width is shown to increase when n decreases (for a given reduced temperature) and to follow the usual scaling behavior for not too low temperature. In a second part, interfacial properties of the Mie n-6 fluid computed by the gradient theory, coupled with an equation of state based on the Barker-Henderson perturbation theory, have been compared with those obtained by molecular simulations. It is demonstrated that, even far from the critical point, the gradient theory is efficient to compute surface tensions and density profiles of this model fluid, provided the equation of state accurately model the phase behavior of the fluid involved (which is not the case for n=8 in this study).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...