Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339362

RESUMO

Lung cancer remains a leading cause of death in the United States and globally, despite progress in treatment and screening efforts. While mortality rates have decreased in recent years, long-term survival of patients with lung cancer continues to be a challenge. Notably, African American (AA) men experience significant disparities in lung cancer compared to European Americans (EA) in terms of incidence, treatment, and survival. Previous studies have explored factors such as smoking patterns and complex social determinants, including socioeconomic status, personal beliefs, and systemic racism, indicating their role in these disparities. In addition to social factors, emerging evidence points to variations in tumor biology, immunity, and comorbid conditions contributing to racial disparities in this disease. This review emphasizes differences in smoking patterns, screening, and early detection and the intricate interplay of social, biological, and environmental conditions that make African Americans more susceptible to developing lung cancer and experiencing poorer outcomes.

2.
Nat Rev Cancer ; 22(7): 378-379, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35292762
3.
Transl Oncol ; 16: 101330, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34990909

RESUMO

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the United States. Despite increased screening options and state-of-art treatments offered in clinics, racial differences remain in CRC. African Americans (AAs) are disproportionately affected by the disease; the incidence and mortality are higher in AAs than Caucasian Americans (CAs). At the time of diagnosis, AAs more often present with advanced stages and aggressive CRCs, primarily accounting for the racial differences in therapeutic outcomes and mortality. The early incidence of CRC in AAs could be attributed to race-specific gene polymorphisms and lifestyle choices associated with socioeconomic status (SES). Altered melatonin-serotonin signaling, besides the established CRC risk factors (age, diet, obesity, alcoholism, and tobacco use), steered by SES, glucocorticoid, and Vitamin D status in AAs could also account for the early incidence in this racial group. This review focuses on how the lifestyle factors, diet, allelic variants, and altered expression of specific genes could lead to atypical serotonin and melatonin signaling by modulating the synthesis, secretion, and signaling of these pineal hormones in AAs and predisposing them to develop more aggressive CRC earlier than CAs. Crosstalk between gut microbiota and pineal hormones and its impact on CRC pathobiology is addressed from a race-specific perspective. Lastly, the status of melatonin-focused CRC treatments, the need to better understand the perturbed melatonin signaling, and the potential of pineal hormone-directed therapeutic interventions to reduce CRC-associated disparity are discussed.

4.
Adv Exp Med Biol ; 1302: 99-111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34286444

RESUMO

Multiple checkpoint mechanisms are overridden by cancer cells in order to develop into a tumor. Neoplastic cells, while constantly changing during the course of cancer progression, also craft their surroundings to meet their growing needs. This crafting involves changing cell surface receptors, affecting response to extracellular signals and secretion of signals that affect the nearby cells and extracellular matrix architecture. This chapter briefly comprehends the non-cancer cells facilitating the cancer growth and elaborates on the notable role of the CCR9-CCL25 chemokine axis in shaping the tumor microenvironment (TME), directly and via immune cells. Association of increased CCR9 and CCL25 levels in various tumors has demonstrated the significance of this axis as a tool commonly used by cancer to flourish. It is involved in attracting immune cells in the tumor and determining their fate via various direct and indirect mechanisms and, leaning the TME toward immunosuppressive state. Besides, elevated CCR9-CCL25 signaling allows survival and rapid proliferation of cancer cells in an otherwise repressive environment. It modulates the intra- and extracellular protein matrix to instigate tumor dissemination and creates a supportive metastatic niche at the secondary sites. Lastly, this chapter abridges the latest research efforts and challenges in using the CCR9-CCL25 axis as a cancer-specific target.


Assuntos
Receptores CCR , Microambiente Tumoral , Transdução de Sinais
5.
Cancers (Basel) ; 13(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34298782

RESUMO

Precise mechanisms underlying breast cancer (BrCa) metastasis are undefined, which becomes a challenge for effective treatments. Chemokine signaling instigates the trafficking of cancer cells in addition to leukocytes. This study aimed to ascertain the clinical and biological significance of the CXCR6/CXCL16 signaling axis in the pathobiology of BrCa. Our data show a higher expression of CXCR6 in BrCa cell lines and tissues. Stage-III BrCa tissues express significantly higher CXCR6 compared to stage-II tissues. The ligand, CXCL16, could remain tethered to the cell surface, and, after proteolytic shedding of the ectodomain, the N-terminal fragment is released, converting it to its oncogenic, soluble form. Like CXCR6, N-terminal CXCL16 and ADAM-10 were significantly higher in stage-III than stage-II, but no significant difference was observed in the C-terminal fragment of CXCL16. Further, stimulation of the CXCR6/CXCL16 axis activated Src, FAK, ERK1/2, and PI3K signaling pathways, as per antibody microarray analysis, which also underlie CXCL16-induced F-actin polymerization. The CXCR6/CXCL16 axis induces cytoskeleton rearrangement facilitating migration and invasion and supports BrCa cell survival by activating the PI3K/Akt pathway. This study highlights the significance of the CXCR6/CXCL16 axis and ADAM10 as potential therapeutic targets for advanced-stage BrCa.

6.
Exp Cell Res ; 397(2): 112364, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188850

RESUMO

Poly (ADP-ribose) polymerase-1 (PARP1) is a DNA damage sensor that gets activated in proportion to the damage, helping cells to determine whether to repair the damage or initiate cell death processes. We have previously shown PARP1's significance in the developmental processes of Dictyostelium discoideum in addition to its role in oxidative stress and UV-C stress induced cell death. In this study, we show the significance of ROS in PARP1 mediated responses of D. discoideum under different stress conditions. Interestingly, our results suggest differential kinetics of PARP1 activation and implications of ROS in starvation and cadmium induced cell death events. Increased accumulation of Poly (ADP-ribose), a product of PARP activation, could be detected within minutes post cadmium stress, whereas PARP1 activation was only a later event with starvation. Starvation induced PARP1 activation was supported by the depletion of ATP and NAD+, while PARP inhibitor confers protective effect during starvation. During starvation, cell death is induced in two phases, a primary ROS driven PARP1 independent early necrotic phase followed by a PARP1 driven ROS dependent paraptotic phase; both of which comprise mitochondrial changes. Cadmium (Cd) exerted a dose-dependent effect on cell death; a low dose of 0.2 mM Cd led to paraptosis and a higher dose of 0.5 mM Cd led to necrosis in D. discoideum cells within 24 h. Interestingly, glutathione (GSH) exposure could rescue cells from Cd stress mediated cell death. Besides unicellular cell death, the developmental arrest induced by cadmium and oxidative stress could be rescued by reinstating the redox equilibrium using GSH. In conclusion, we underscore the significant link between PARP1 and ROS in regulating the process of cell death and development in D. discoideum.


Assuntos
Morte Celular , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/metabolismo , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas de Protozoários/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cádmio/toxicidade , Dictyostelium/efeitos dos fármacos , Mitocôndrias , Transdução de Sinais , Estresse Fisiológico
7.
Cancers (Basel) ; 11(12)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31769418

RESUMO

Prostate cancer affects African Americans disproportionately by exhibiting greater incidence, rapid disease progression, and higher mortality when compared to their Caucasian counterparts. Additionally, standard treatment interventions do not achieve similar outcome in African Americans compared to Caucasian Americans, indicating differences in host factors contributing to racial disparity. African Americans have allelic variants and hyper-expression of genes that often lead to an immunosuppressive tumor microenvironment, possibly contributing to more aggressive tumors and poorer disease and therapeutic outcomes than Caucasians. In this review, we have discussed race-specific differences in external factors impacting internal milieu, which modify immunological topography as well as contribute to disparity in prostate cancer.

8.
Cancer Lett ; 454: 1-13, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974114

RESUMO

Molecular reprogramming in response to chemotherapeutics leads to poor therapeutic outcomes for prostate cancer (PCa). In this study, we demonstrated that CXCR6-CXCL16 axis promotes DTX resistance and acts as a counter-defense mechanism. After CXCR6 activation, cell death in response to DTX was inhibited, and blocking of CXCR6 potentiated DTX cytotoxicity. Moreover, in response to DTX, PCa cells expressed higher CXCR6, CXCL16, and ADAM-10. Furthermore, ADAM-10-mediated release of CXCL16 hyper-activated CXCR6 signaling in response to DTX. Activation of CXCR6 resulted in increased GSK-3ß, NF-κB, ERK1/2 phosphorylation, and survivin expression, which reduce DTX response. Finally, treatment of PCa cells with anti-CXCR6 monoclonal antibody synergistically or additively induced cell death with ∼1.5-4.5 fold reduction in the effective concentration of DTX. In sum, our data imply that co-targeting of CXCR6 would lead to therapeutic enhancement of DTX, leading to better clinical outcomes for PCa patients.


Assuntos
Quimiocina CXCL16/metabolismo , Docetaxel/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Receptores CXCR6/metabolismo , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Masculino , Proteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Células PC-3 , Neoplasias da Próstata/patologia , Receptores CXCR6/antagonistas & inibidores , Receptores CXCR6/imunologia , Transdução de Sinais
9.
Cancer Cell Int ; 19: 98, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31011292

RESUMO

BACKGROUND: Currently offered therapeutics to treat colon cancer (CoCa) are toxic when given at maximum tolerated dose to achieve optimal clinical response. Hence, less toxic therapeutic intervention is needed to treat CoCa. In this study, we investigated the effect of a natural agent, Emodin, on CoCa. METHODS: Cell viability (MTT) assay was used to determine the effect of Emodin on human CoCa and colon epithelial cells. Flow cytometric analysis was used to determine Emodin induced cell death. Antibody microarray and western blot analyses were used to determine Emodin induced molecular changes involved in cell death. Change in mitochondrial membrane potential in response to Emodin was determined by flow cytometric analysis. Expression and localization of Bcl-2 family proteins were assessed by western blot analysis. RESULTS: Emodin decreased viability of CoCa cells and induced apoptosis in a time and dose-dependent manner compared to vehicle-treated control without significantly impacting normal colon epithelial cells. Emodin activated caspases, modulated Bcl-2 family of proteins and reduced mitochondrial membrane potential to induce CoCa cell death. Further, changes in Bcl-2 family protein expression and localization correlated with loss in mitochondrial membrane potential. Signaling (MAPK/JNK, PI3K/AKT, NF-κß and STAT) pathways associated with cell growth, differentiation, and Bcl-2 family expression or function were negatively regulated by Emodin. CONCLUSIONS: Ability of Emodin to impact molecular pathways involved in cell survival and apoptosis highlight the potential of this agent as a new and less toxic alternative for CoCa treatment.

10.
Sci Rep ; 9(1): 4014, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850664

RESUMO

Despite recent advances, breast cancer (BrCa) still affects many women and the impact is disproportional in African Americans (AA) compared to European Americans (EA). Addressing socioeconomic and behavioral status has not been enough to reduce disparity, suggesting contribution of biological differences in BrCa disparity. Our laboratory was first to show involvement of CC chemokines in BrCa. In this study, using ONCOMINE, TCGA, bc-GenExMiner and KMplotter, we examined the association of CC chemokines in BrCa outcomes and disparity. We show over-expression of CCL5, -7, -11, -17, -20, -22 and -25 in BrCa tissues. High mRNA levels of CCL7, -8, -17, -20 and -25 predicted a decrease in overall survival (OS). CCL7 and CCL8 were associated with decreased relapse-free survival. Expression of CCL17 and CCL25 was associated with decreased OS in AA. In EA, CCL8 was associated with decreased OS. Expression of CCL5, -7, -8, -17, -20 and -25 was highest in TNBC. Expression of CCL11 and CCL22 was associated with HER2. CCL7, -8, -17, -20 and -25 were elevated in AAs. In conclusion, our analysis suggests significant association of CC-chemokines in BrCa progression, OS and disparate disease outcome in AA compared to EA patients.


Assuntos
Neoplasias da Mama/metabolismo , Quimiocinas CC/metabolismo , Progressão da Doença , Feminino , Humanos , RNA Mensageiro/metabolismo , População Branca
11.
Sci Rep ; 9(1): 2527, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792527

RESUMO

Ovarian cancer (OvCa) is the leading cause of death from gynecological malignancies. Five-year survival rate of OvCa ranges from 30-92%, depending on the spread of disease at diagnosis. Role of chemokines is well appreciated in cancer, including OvCa. However, their precise role is understudied. Here, we show clinical and biological significance of CXCR6-CXCL16 and ADAM10 in OvCa. Expression of CXCR6 and N-terminal CXCL16 was significantly higher in serous carcinoma tissues compared to endometrioid. OvCa cells (SKOV-3 and OVCAR-3) also showed higher expression of CXCR6 than normal ovarian epithelial cells (IOSE-7576) while CXCL16 was higher in SKOV-3 than IOSE-7576. Furthermore, N-terminal CXCL16 was higher in conditioned media of OvCa cells than IOSE-7576. Compared to OVCAR-3, SKOV-3 cells, which had higher CXCL16, expressed significantly higher transcripts of ADAM10, a protease that cleaves CXCL16. OVCAR-3 cells showed higher CXCR6 specific migration whereas SKOV-3 cells showed more invasion. Difference in invasive potential of these cells was due to modulation of different MMPs after CXCL16 stimulation. Higher CXCR6 expression in serous papillary carcinoma tissues suggests its association with aggressive OvCa. Increased migration-invasion towards CXCL16 implies its role in metastatic spread. Therefore, CXCR6-CXCL16 axis could be used to differentiate between aggressive versus non-aggressive disease and as a target for better prognosis.


Assuntos
Proteína ADAM10/genética , Quimiocina CXCL16/genética , Neoplasias Ovarianas/genética , Receptores CXCR6/genética , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Metaloproteinases da Matriz/genética , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Ovário/patologia , Domínios Proteicos/genética
12.
Int J Oncol ; 53(4): 1442-1454, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30066888

RESUMO

Colon cancer patients receiving chemotherapy continue to be burdened with therapeutic failure and adverse side effects, yielding a need to develop more effective treatments. The present study investigates Cinnamtannin B-1 (CTB-1) as a potential low-toxicity therapeutic alternative for colon cancer. CTB-1-treated DLD-1, COLO 201 and HCT-116 (WT p53 and p53 null) colon cancer cells and CCD 841 CoN normal colon epithelial cells were assessed for changes in survival using MTT assay. The effects of CTB-1 on cell cycle progression and the apoptosis of colon cancer cells were measured using flow cytometry and/or immunofluorescence. The expression profiles of cell survival molecules, particularly apoptotic proteins, in the colon cancer cells were evaluated following CTB-1 treatment via antibody array, then validated by western blot analysis. Additionally, the potential synergy between CTB-1 and 5-fluorouracil (5-FU), a conventional chemotherapeutic agent used in the treatment of colon cancer, against colon cancer cells was assessed using MTT assay and Calcusyn software. The results revealed that CTB-1 significantly decreased the survival of the DLD-1, COLO 201 and HCT-116 cells in a time and/or dose-dependent manner, with minimal cytotoxicity to normal colon cells. CTB-1 treatment was shown to induce cell cycle arrest and apoptosis of DLD-1 and COLO 201 cells. Of note, CTB-1 modulated the expression of several cell survival molecules, which tend to be deregulated in colon cancer, including p53, a key transcription factor involved in apoptosis. The downstream regulation of Bcl-2 and Bak expression, as well as cytochrome c release into the cytosol, was also observed following CTB-1 treatment. Furthermore, CTB-1 was shown to significantly enhance the potency of 5-FU via a synergistic drug interaction. This study reveals for the first time, to the best of our knowledge, the ability of CTB-1 to decrease the survival of colon cancer cells through pro-apoptotic mechanisms and display synergy with conventional chemotherapy, demonstrating the potential therapeutic benefit of CTB-1 in colon cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Proantocianidinas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Perfilação da Expressão Gênica , Humanos , Proantocianidinas/uso terapêutico , Resultado do Tratamento
13.
World J Surg Oncol ; 16(1): 108, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29898731

RESUMO

BACKGROUND: Despite recent advances in diagnosis and treatment, prostate cancer (PCa) remains the leading cause of cancer-related deaths in men. Current treatments offered in the clinics are often toxic and have severe side effects. Hence, to treat and manage PCa, new agents with fewer side effects or having potential to reduce side effects of conventional therapy are needed. In this study, we show anti-cancer effects of quercetin, an abundant bioflavonoid commonly used to treat prostatitis, and defined quercetin-induced cellular and molecular changes leading to PCa cell death. METHODS: Cell viability was assessed using MTT. Cell death mode, mitochondrial outer membrane potential, and oxidative stress levels were determined by flow cytometry using Annexin V-7 AAD dual staining kit, JC-1 dye, and ROS detection kit, respectively. Antibody microarray and western blot were used to delineate the molecular changes induced by quercetin. RESULTS: PCa cells treated with various concentrations of quercetin showed time- and dose-dependent decrease in cell viability compared to controls, without affecting normal prostate epithelial cells. Quercetin led to apoptotic and necrotic cell death in PCa cells by affecting the mitochondrial integrity and disturbing the ROS homeostasis depending upon the genetic makeup and oxidative status of the cells. LNCaP and PC-3 cells that have an oxidative cellular environment showed ROS quenching after quercetin treatment while DU-145 showed rise in ROS levels despite having a highly reductive environment. Opposing effects of quercetin were also observed on the pro-survival pathways of PCa cells. PCa cells with mutated p53 (DU-145) and increased ROS showed significant reduction in the activation of pro-survival Akt pathway while Raf/MEK were activated in response to quercetin. PC-3 cells lacking p53 and PTEN with reduced ROS levels showed significant activation of Akt and NF-κB pathway. Although some of these changes are commonly associated with oncogenic response, the cumulative effect of these alterations is PCa cell death. CONCLUSIONS: Our results demonstrated quercetin exerts its anti-cancer effects by modulating ROS, Akt, and NF-κB pathways. Quercetin could be used as a chemopreventive option as well as in combination with chemotherapeutic drugs to improve clinical outcomes of PCa patients.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Quercetina/farmacologia , Quercetina/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , Prognóstico
14.
J Cell Sci ; 131(7)2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29507118

RESUMO

The apical junctional complex (AJC), which includes tight junctions (TJs) and adherens junctions (AJs), determines the epithelial polarity, cell-cell adhesion and permeability barrier. An intriguing characteristic of a TJ is the dynamic nature of its multiprotein complex. Occludin is the most mobile TJ protein, but its significance in TJ dynamics is poorly understood. On the basis of phosphorylation sites, we distinguished a sequence in the C-terminal domain of occludin as a regulatory motif (ORM). Deletion of ORM and expression of a deletion mutant of occludin in renal and intestinal epithelia reduced the mobility of occludin at the TJs. ORM deletion attenuated Ca2+ depletion, osmotic stress and hydrogen peroxide-induced disruption of TJs, AJs and the cytoskeleton. The double point mutations T403A/T404A, but not T403D/T404D, in occludin mimicked the effects of ORM deletion on occludin mobility and AJC disruption by Ca2+ depletion. Both Y398A/Y402A and Y398D/Y402D double point mutations partially blocked AJC disruption. Expression of a deletion mutant of occludin attenuated collective cell migration in the renal and intestinal epithelia. Overall, this study reveals the role of ORM and its phosphorylation in occludin mobility, AJC dynamics and epithelial cell migration.


Assuntos
Junções Aderentes/química , Ocludina/química , Fosfoproteínas/química , Junções Íntimas/química , Junções Aderentes/genética , Animais , Cálcio/metabolismo , Movimento Celular/genética , Polaridade Celular/genética , Citoesqueleto/química , Citoesqueleto/genética , Cães , Células Epiteliais/química , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Junções Intercelulares/química , Junções Intercelulares/genética , Células Madin Darby de Rim Canino , Ocludina/genética , Fosfoproteínas/genética , Fosforilação/genética , Mutação Puntual/genética , Domínios Proteicos/genética , Junções Íntimas/genética
15.
Prog Mol Biol Transl Sci ; 151: 113-136, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29096891

RESUMO

Breast cancer touches women's life worldwide. Expected outcome is not achieved due to molecular heterogeneity and complex biology despite substantial advancement in diagnosis, prevention and treatment of breast cancer. Patients with estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (Her2) positive tumors receive hormone ablation and Her2 directed therapy. While patients diagnosed with triple-negative breast cancer receive chemotherapy in both the early and advanced stages. However, chemotherapeutic efficacies are not the same in every patient, which has fostered a major effort to identify new targets to treat breast cancer. Positive therapeutic outcome after immune checkpoint inhibitors emphasizes the significance of the host immune system in breast cancer. Cancer develops in immune competent host wherein cytokines, while shaping the immune system, also serve as growth signals for cancer cells. The dynamics of cross talk between immune system and cancer cells mediated by cytokines and chemokines changes during cancer initiation, progression, and therapeutic interventions. Hence, better understanding of molecular footprint of cancer cells, as well as crosstalk between cancer cells and host immune system is needed to develop patient specific treatment and management of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Humanos , Modelos Biológicos
16.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 2942-2955, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27663234

RESUMO

Apoptosis Inducing Factor (AIF), a phylogenetically conserved mitochondrial inter-membrane space flavoprotein has an important role in caspase independent cell death. Nevertheless, AIF is also essential for cell survival. It is required for mitochondrial organization and energy metabolism. Upon apoptotic stimulation, AIF induces DNA fragmentation after its mitochondrio-nuclear translocation. Although it executes critical cellular functions in a coordinated manner, the exact mechanism still remains obscure. The present study aims to understand AIF's role in cell survival, growth and development by its down-regulation in an interesting unicellular eukaryote, D. discoideum which exhibits multicellularity upon starvation. Constitutive AIF down-regulated (dR) cells exhibited slower growth and delayed developmental morphogenesis. Also, constitutive AIF dR cells manifested high intracellular ROS, oxidative DNA damage and calcium levels with lower ATP content. Interestingly, constitutive AIF dR cells showed amelioration in cell growth upon antioxidant treatment, strengthening its role as ROS regulator. Under oxidative stress, AIF dR cells showed early mitochondrial membrane depolarization followed by AIF translocation from mitochondria to nucleus and exhibited necrotic cell death as compared to paraptoptic cell death of control cells. Thus, the results of this study provide an exemplar where AIF is involved in growth and development by regulating ROS levels and maintaining mitochondrial function in D. discoideum, an evolutionarily significant model organism exhibiting caspase independent apoptosis.


Assuntos
Fator de Indução de Apoptose/metabolismo , Evolução Biológica , Dictyostelium/citologia , Dictyostelium/metabolismo , Trifosfato de Adenosina/metabolismo , Anexina A5/metabolismo , Cálcio/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/ultraestrutura , Regulação para Baixo/efeitos dos fármacos , Citometria de Fluxo , Fluoresceína-5-Isotiocianato/metabolismo , Fluorometria , Glucose/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , NAD/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Propídio/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Antissenso/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Coloração e Rotulagem
17.
Br J Cancer ; 114(12): 1343-51, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27149649

RESUMO

BACKGROUND: Adjuvant chemotherapy offered to treat colon cancer is based on the TNM staging system, which often fails due to molecular heterogeneity and undefined molecular mechanisms independent of TNM. Therefore, identification of markers to better predict therapeutic option and outcome is needed. In this study we have characterised the clinical association of CCR6 with colon cancer and defined CCR6-mediated molecular pathway. METHODS: Immunohistochemistry, RT-qPCR, western blot and FACS were used to determine expression of CCR6 and/or EMT markers in colon tissues/cells. BrdU assay and trans-well system were used to determine cell proliferation, migration and invasion in response to CCL20. RESULTS: CCR6 was higher in cancer cases compared to normal adjacent tissue and expression was associated with nodal status and distant metastasis. Similarly, CCR6 expression was higher in cells derived from node-positive cases and highest expression was in cells derived from metastatic cases. Significant changes in EMT markers, that is, E-cadherin, vimentin, ß-catenin, N-cadherin, α-SMA, SNAILl and ZEB1 were observed in response to CCL20 along with decreased proliferation, increased migratory and invasive potential. CONCLUSIONS: Results suggest CCR6 as a potential therapeutic target as well as biomarker in addition to nodal status for predicting therapeutic option.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Receptores CCR6/biossíntese , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Quimiocina CCL20/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Imuno-Histoquímica , Invasividade Neoplásica , Transdução de Sinais
18.
Cell Cycle ; 15(6): 819-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27029529

RESUMO

Despite state of the art cancer diagnostics and therapies offered in clinic, prostate cancer (PCa) remains the second leading cause of cancer-related deaths. Hence, more robust therapeutic/preventive regimes are required to combat this lethal disease. In the current study, we have tested the efficacy of Andrographolide (AG), a bioactive diterpenoid isolated from Andrographis paniculata, against PCa. This natural agent selectively affects PCa cell viability in a dose and time-dependent manner, without affecting primary prostate epithelial cells. Furthermore, AG showed differential effect on cell cycle phases in LNCaP, C4-2b and PC3 cells compared to retinoblastoma protein (RB(-/-)) and CDKN2A lacking DU-145 cells. G2/M transition was blocked in LNCaP, C4-2b and PC3 after AG treatment whereas DU-145 cells failed to transit G1/S phase. This difference was primarily due to differential activation of cell cycle regulators in these cell lines. Levels of cyclin A2 after AG treatment increased in all PCa cells line. Cyclin B1 levels increased in LNCaP and PC3, decreased in C4-2b and showed no difference in DU-145 cells after AG treatment. AG decreased cyclin E2 levels only in PC3 and DU-145 cells. It also altered Rb, H3, Wee1 and CDC2 phosphorylation in PCa cells. Intriguingly, AG reduced cell viability and the ability of PCa cells to migrate via modulating CXCL11 and CXCR3 and CXCR7 expression. The significant impact of AG on cellular and molecular processes involved in PCa progression suggests its potential use as a therapeutic and/or preventive agent for PCa.


Assuntos
Andrographis/química , Antineoplásicos Fitogênicos/farmacologia , Diterpenos/farmacologia , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Receptores CXCR3/genética , Receptores CXCR/genética , Antineoplásicos Fitogênicos/isolamento & purificação , Proteína Quinase CDC2 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Ciclina B1/genética , Ciclina B1/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Extratos Vegetais/química , Próstata/efeitos dos fármacos , Próstata/metabolismo , Próstata/patologia , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptores CXCR/antagonistas & inibidores , Receptores CXCR/metabolismo , Receptores CXCR3/antagonistas & inibidores , Receptores CXCR3/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais
19.
BMC Cancer ; 16: 189, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26951793

RESUMO

BACKGROUND: Alcohol consumption is one of the major risk factors for colorectal cancer. However, the mechanism involved in this effect of alcohol is unknown. METHODS: We evaluated the effect of chronic ethanol feeding on azoxymethane and dextran sulfate sodium (AOM/DSS)-induced carcinogenesis in mouse colon. Inflammation in colonic mucosa was assessed at a precancerous stage by evaluating mucosal infiltration of neutrophils and macrophages, and analysis of cytokine and chemokine gene expression. RESULTS: Chronic ethanol feeding significantly increased the number and size of polyps in colon of AOM/DSS treated mice. Confocal microscopic and immunoblot analyses showed a significant elevation of phospho-Smad, VEGF and HIF1α in the colonic mucosa. RT-PCR analysis at a precancerous stage indicated that ethanol significantly increases the expression of cytokines IL-1α, IL-6 and TNFα, and the chemokines CCL5/RANTES, CXCL9/MIG and CXCL10/IP-10 in the colonic mucosa of AOM/DSS treated mice. Confocal microscopy showed that ethanol feeding induces a dramatic elevation of myeloperoxidase, Gr1 and CD68-positive cells in the colonic mucosa of AOM/DSS-treated mice. Ethanol feeding enhanced AOM/DSS-induced suppression of tight junction protein expression and elevated cell proliferation marker, Ki-67 in the colonic epithelium. CONCLUSION: This study demonstrates that chronic ethanol feeding promotes colonic tumorigenesis potentially by enhancing inflammation and elevation of proinflammatory cytokines and chemokines.


Assuntos
Azoximetano/efeitos adversos , Transformação Celular Neoplásica , Neoplasias do Colo/etiologia , Sulfato de Dextrana/efeitos adversos , Etanol/administração & dosagem , Inflamação/complicações , Inflamação/etiologia , Mucosa Intestinal/efeitos dos fármacos , Animais , Biomarcadores Tumorais , Proliferação de Células , Quimiocinas/genética , Quimiocinas/metabolismo , Neoplasias do Colo/patologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Expressão Gênica , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Transporte Proteico
20.
Biochim Biophys Acta ; 1860(4): 765-74, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26721332

RESUMO

BACKGROUND: Disruption of epithelial tight junctions (TJ), gut barrier dysfunction and endotoxemia play crucial role in the pathogenesis of alcoholic tissue injury. Occludin, a transmembrane protein of TJ, is depleted in colon by alcohol. However, it is unknown whether occludin depletion influences alcoholic gut and liver injury. METHODS: Wild type (WT) and occludin deficient (Ocln(-/-)) mice were fed 1-6% ethanol in Lieber-DeCarli diet. Gut permeability was measured by vascular-to-luminal flux of FITC-inulin. Junctional integrity was analyzed by confocal microscopy. Liver injury was assessed by plasma transaminase, histopathology and triglyceride analyses. The effect of occludin depletion on acetaldehyde-induced TJ disruption was confirmed in Caco-2 cell monolayers. RESULTS: Ethanol feeding significantly reduced body weight gain in Ocln(-/-) mice. Ethanol increased inulin permeability in colon of both WT and Ocln(-/-) mice, but the effect was 4-fold higher in Ocln(-/-) mice. The gross morphology of colonic mucosa was unaltered, but ethanol disrupted the actin cytoskeleton, induced redistribution of occludin, ZO-1, E-cadherin and ß-catenin from the junctions and elevated TLR4, which was more severe in Ocln(-/-) mice. Occludin knockdown significantly enhanced acetaldehyde-induced TJ disruption and barrier dysfunction in Caco-2 cell monolayers. Ethanol significantly increased liver weight and plasma transaminase activity in Ocln(-/-) mice, but not in WT mice. Histological analysis indicated more severe lesions and fat deposition in the liver of ethanol-fed Ocln(-/-) mice. Ethanol-induced elevation of liver triglyceride was also higher in Ocln(-/-) mice. CONCLUSION: This study indicates that occludin deficiency increases susceptibility to ethanol-induced colonic mucosal barrier dysfunction and liver damage in mice.


Assuntos
Colo/metabolismo , Etanol/efeitos adversos , Mucosa Intestinal/metabolismo , Hepatopatias/metabolismo , Ocludina/deficiência , Junções Íntimas/metabolismo , Animais , Células CACO-2 , Colo/patologia , Etanol/farmacologia , Humanos , Mucosa Intestinal/patologia , Inulina/farmacocinética , Inulina/farmacologia , Fígado/metabolismo , Fígado/patologia , Hepatopatias/genética , Hepatopatias/patologia , Camundongos , Camundongos Knockout , Ocludina/metabolismo , Permeabilidade/efeitos dos fármacos , Junções Íntimas/genética , Triglicerídeos/genética , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...