Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 79: 190-200, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29772469

RESUMO

New steroidal imidazolidinthione derivatives (4-6) were synthesized from steroidal thiosemicarbazones and dichloroethane. The synthesized compounds were characterized using spectral data analysis. Theoretical DFT involving B3LYP/6-31G∗∗ level of theory was employed to gain insights into the molecular structure of the target compounds. MEPS and FMO analysis were carried out. HOMO-LUMO energy gap was determined which helped to evaluate various global descriptors like hardness, chemical potential, electronegativity, nucleophilicity and electrophilicity index, etc. The calculated properties established that the synthesized products are more or less similar in their reactivity behaviour. To explore their biological potential, interaction studies of compounds (4-6) with DNA were carried out using various biophysical techniques. The compounds bind DNA preferentially through electrostatic and hydrophobic interactions with Kb of 3.21 × 103 M-1, 2.79 × 103 M-1 and 2.26 × 103 M-1, respectively indicating the higher binding affinity of compound 4 towards DNA. Gel electrophoresis of compound 4 demonstrated strong interaction during the concentration dependent cleavage activity with pBR322 DNA. It was observed that these steroidal imidazolidinthiones are minor groove binders of DNA which was validated using molecular docking studies. An in vitro cytotoxicity screening using MTT assay revealed that the compounds (4-6) exhibit potential toxicity against different human cancer cells. Highest antiproliferative effect was observed on HeLa cells by compound 4. The results suggested that compounds 4-6 cause apoptotic cell death by cleaving apoptotic protein caspase-3 and suppress anti-apoptotic protein Bcl-2 in HeLa cancer cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Imidazóis/farmacologia , Esteroides/farmacologia , Tionas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Imidazóis/síntese química , Imidazóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Esteroides/síntese química , Esteroides/química , Relação Estrutura-Atividade , Tionas/síntese química , Tionas/química
2.
Int J Biol Macromol ; 111: 52-61, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29292141

RESUMO

The new steroidal pyrimidine derivatives (4-6) were synthesized by the reaction of steroidal thiosemicarbazones with (2-methyl) diethyl malonate in absolute ethanol. After characterization by spectral and analytical data, the DNA interaction studies of compounds (4-6) were carried out by UV-vis, fluorescence spectroscopy, hydrodynamic measurements, molecular docking and gel electrophoresis. The compounds bind to DNA preferentially through electrostatic and hydrophobic interactions with Kb; 2.31×103M-1, 1.93×103M-1 and 2.05×103M-1, respectively indicating the higher binding affinity of compound 4 towards DNA. Gel electrophoresis demonstrated that compound 4 showed a strong interaction during the concentration dependent cleavage activity with pBR322 DNA. The molecular docking study suggested the intercalation of steroidal pyrimidine moiety in the minor groove of DNA. During in vitro cytotoxicity, compounds (4-6) revealed potential toxicity against the different human cancer cells (MTT assay). During DAPI staining, the nuclear fragmentations on cells occurred after treatment with compounds 4 and 5. Western blotting analysis clearly indicates that compound 4 causes apoptosis in MCF-7 cancer cells. The results revealed that compound 4 has better prospectus to act as a cancer chemotherapeutic candidate, which warrants further in vivo anticancer investigations.


Assuntos
Antineoplásicos/química , DNA/efeitos dos fármacos , Pirimidinas/química , Tiossemicarbazonas/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Humanos , Células MCF-7 , Malonatos/síntese química , Malonatos/química , Malonatos/farmacologia , Simulação de Acoplamento Molecular , Pirimidinas/síntese química , Pirimidinas/farmacologia , Esteroides/síntese química , Esteroides/química , Esteroides/farmacologia , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...