Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-21, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948293

RESUMO

Fritillaria cirrhosa D. Don is a well-known medicinal plant of Kashmir Himalaya. Traditionally, it has been used to treat several diseases, including cancer. However, the molecular mechanism behind anticancer activity remains unclear. Therefore, in the present study, we have performed high performance-liquid chromatography-mass spectrometry (HR-LC/MS), network pharmacology, molecular docking and molecular dynamic (MD) simulation methods were used to explore the underlying molecular mechanism of F. cirrhosa for the treatment of breast cancer (BC). The targets of F. cirrhosa for treating BC were predicted using databases like SwissTargetPrediction, Gene Cards and OMIM. Protein-protein interaction analysis and network construction were performed using the Search Tool for the Retrieval of Interacting Genes/Proteins programme, and analysis of Gene Ontology term enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment was done using the Cytoscape programme. In addition, molecular docking was used to investigate intermolecular interactions between the compounds and the proteins using the Autodock tool. MD simulations studies were also used to explore the stability of the representative AKT1 gene peiminine and Imperialine-3-ß-glucoside. In addition, experimental treatment of F. cirrhosa was also verified. HR-LC/MS detected the presence of several secondary metabolites. Afterward, molecular docking was used to verify the effective activity of the active ingredients against the prospective targets. Additionally, Peiminine and Imperialine-3-ß-glucoside showed the highest binding energy score against AKT-1 (-12.99 kcal/mol and -12.08 kcal/mol). AKT1 with Peiminine and Imperialine-3-ß-glucoside was further explored for MD simulations. During the MD simulation study at 100 nanoseconds, a stable complex formation of AKT1 + Peiminine and Imperialine-3-ß-glucoside was observed. The binding free energy calculations using MM/GBSA showed significant binding of the ligand with protein (ΔG: -79.83 ± 3.0 kcal/mol) between AKT1 + Peiminine was observed. The principal component analysis exhibited a stable converged structure by achieving global motion. Lastly, F. cirrhosa extracts also exhibited momentous anticancer activity through in vitro studies. Therefore, present study revealed the molecular mechanism of F. cirrhosa constituents for the effective treatment of BC by deactivating various multiple gene targets, multiple pathways particularly the PI3K-Akt signaling pathway. These findings emphasized the momentous anti-BC activity of F. cirrhosa constituents.Communicated by Ramaswamy H. Sarma.


Fritillaria cirrhosa D. Don is well-known, the medicinal plant in the Kashmir Himalaya. Traditionally, it has been used to treat various diseases, including cancer.Many secondary metabolites were identified in F. cirrhosa using high performance-liquid chromatography-mass spectrometry technique, and these bioactive components and potential breast cancer (BC) therapy targets were validated using network pharmacology, molecular docking and MD simulation studies.The bioactive components such as Peimine, Imperialine 3-glucoside and other vital phytocompounds of F. cirrhosa have been demonstrated to interact with AKT1 efficiently, indicating their relevance in inhibiting AKT1 and other protein targets in BC.This study overall showed the anticancer activity of F. cirrhosa extracts by integrating network pharmacology, docking analysis and in vitro experiments.

2.
Front Pharmacol ; 14: 1135898, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724182

RESUMO

Delphinium roylei Munz is an indigenous medicinal plant to India where its activity against cancer has not been previously investigated, and its specific interactions of bioactive compounds with vulnerable breast cancer drug targets remain largely unknown. Therefore, in the current study, we aimed to evaluate the anti-breast cancer activity of different extracts of D. roylei against breast cancer and deciphering the molecular mechanism by Network Pharmacology combined with Molecular Docking and in vitro verification. The experimental plant was extracted with various organic solvents according to their polarity index. Phytocompounds were identified by High resolution-liquid chromatography-mass spectrometry (HR-LC/MS) technique, and SwissADME programme evaluated their physicochemical properties. Next, target(s) associated with the obtained bioactives or breast cancer-related targets were retrieved by public databases, and the Venn diagram selected the overlapping targets. The networks between overlapping targets and bioactive were visualized, constructed, and analyzed by STRING programme and Cytoscape software. Finally, we implemented a molecular docking test (MDT) using AutoDock Vina to explore key target(s) and compound(s). HR-LC/MS detected hundreds of phytocompounds, and few were accepted by Lipinski's rules after virtual screening and therefore classified as drug-like compounds (DLCs). A total of 464 potential target genes were attained for the nine quantitative phytocompounds and using Gene Cards, OMIM and DisGeNET platforms, 12063 disease targets linked to breast cancer were retrieved. With Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment, a total of 20 signalling pathways were manifested, and a hub signalling pathway (PI3K-Akt signalling pathway), a key target (Akt1), and a key compound (8-Hydroxycoumarin) were selected among the 20 signalling pathways via molecular docking studies. The molecular docking investigation revealed that among the nine phytoconstituents, 8-hydroxycoumarin showed the best binding energy (-9.2 kcal/mol) with the Akt1 breast cancer target. 8-hydroxycoumarin followed all the ADME property prediction using SwissADME, and 100 nanoseconds (ns) MD simulations of 8-hydroxycoumarin complexes with Akt1 were found to be stable. Furthermore, D. roylei extracts also showed significant antioxidant and anticancer activity through in vitro studies. Our findings indicated for the first time that D. roylei extracts could be used in the treatment of BC.

3.
Sci Rep ; 12(1): 12547, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869098

RESUMO

Geranium wallichianum D. Don ex Sweet is a well-known medicinal plant in Kashmir Himalya. The evidence for its modern medicinal applications remains majorly unexplored. The present study was undertaken to elucidate the detailed antimicrobial promises of different crude extracts (methanolic, ethanolic, petroleum ether, and ethyl acetate) of G. wallichainum against common human bacterial and fungal pathogens in order to scientifically validate its traditional use. The LC-MS analysis of G. wallichainum yielded 141 bioactive compounds with the vast majority of them having therapeutic applications. Determination of minimum inhibitory concentrations (MICs) by broth microdilution method of G. wallichainum was tested against bacterial and fungal pathogens with MICs ranging from 0.39 to 400 µg/mL. Furthermore, virtual ligands screening yielded elatine, kaempferol, and germacrene-A as medicinally most active constituents and the potential inhibitors of penicillin-binding protein (PBP), dihydropteroate synthase (DHPS), elongation factor-Tu (Eu-Tu), ABC transporter, 1,3 beta glycan, and beta-tubulin. The root mean square deviation (RMSD) graphs obtained through the molecular dynamic simulations (MDS) indicated the true bonding interactions which were further validated using root mean square fluctuation (RMSF) graphs which provided a better understanding of the amino acids present in the proteins responsible for the molecular motions and fluctuations. The effective binding of elatine, kaempferol, and germacrene-A with these proteins provides ground for further research to understand the underlying mechanism that ceases the growth of these microbes.


Assuntos
Anti-Infecciosos , Geranium , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Geranium/química , Humanos , Quempferóis/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Extratos Vegetais/química
4.
Front Neurosci ; 16: 884345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651632

RESUMO

The current scientific community is facing a daunting challenge to unravel reliable natural compounds with realistic potential to treat neurological disorders such as Alzheimer's disease (AD). The reported compounds/drugs mostly synthetic deemed the reliability and therapeutic potential largely due to their complexity and off-target issues. The natural products from nutraceutical compounds emerge as viable preventive therapeutics to fill the huge gap in treating neurological disorders. Considering that Alzheimer's disease is a multifactorial disease, natural compounds offer the advantage of a multitarget approach, tagging different molecular sites in the human brain, as compared with the single-target activity of most of the drugs so far used to treat Alzheimer's disease. A wide range of plant extracts and phytochemicals reported to possess the therapeutic potential to Alzheimer's disease includes curcumin, resveratrol, epigallocatechin-3-gallate, morin, delphinidins, quercetin, luteolin, oleocanthal, and other phytochemicals such as huperzine A, limonoids, and azaphilones. Reported targets of these natural compounds include inhibition of acetylcholinesterase, amyloid senile plaques, oxidation products, inflammatory pathways, specific brain receptors, etc. We tenaciously aimed to review the in-depth potential of natural products and their therapeutic applications against Alzheimer's disease, with a special focus on a diversity of medicinal plants and phytocompounds and their mechanism of action against Alzheimer's disease pathologies. We strongly believe that the medicinal plants and phytoconstituents alone or in combination with other compounds would be effective treatments against Alzheimer's disease with lesser side effects as compared to currently available treatments.

5.
Med Chem ; 18(10): 1109-1121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507782

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The burden of antimicrobial resistance demands a continued search for new antimicrobial drugs. The synthetic drugs used clinically have serious side effects. Natural products or compounds derived from natural sources show diversity in structure and play an essential role in drug discovery and development. OBJECTIVE: Delphinium roylei is an important medicinal herb of Kashmir Himalaya, India. Traditionally this medicinal plant treats liver infections, skin problems, and chronic lower back pain. The current study evaluates the antimicrobial potential of various extracts by in -vitro and in -silico studies. METHODS: Three extracts and 168 bioactive compounds analysed through LC-MS data, with the vast majority of them having therapeutic applications. D. roylei have been screened for the antimicrobial activity against bacteria (Escherichai coli, Streptococcus pneumonia, Haemophilus influenzae, Neisseria mucosa) and fungi (Candida albicans, Candida glabrata, Candida paropsilosis) species through molecular docking using autodock Vina, MD simulation and a broth microdilution method for minimum inhibitory concentration (MIC) evaluation. RESULTS: The extracts and the compounds analyzed through the LC-MS technique of Delphinium roylie showed significant antimicrobial activity. CONCLUSION: Our study established that the leaf extracts of Delphinium roylei exhibit antimicrobial activity and thus confirm its importance in traditional medicine.


Assuntos
Anti-Infecciosos , Delphinium , Plantas Medicinais , Antibacterianos , Candida albicans , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Extratos Vegetais
6.
Sci Rep ; 12(1): 7296, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508512

RESUMO

Fritillaria cirrhosa D. Don (Liliaceae), a valuable and critically endangered medicinal herb of northwest India, including Jammu and Kashmir, grows in temperate to alpine regions of the Himalaya. It is known as the traditional herb for cardiovascular diseases, respiratory diseases, and metabolic disorders. The plant bulbs are precious and are used to cure many other health complications. The current study analysed the phytoconstituents by liquid chromatography-mass spectrometry (LC-MS) of different crude extracts (methanolic, petroleum ether, and ethyl acetate) of F. cirrhosa. The LC-MS analysis from the bulbs of F. cirrhosa yielded 88 bioactive compounds, with the vast majority having therapeutic applications. Further, determination of minimum inhibitory concentrations (MICs) by broth microdilution method of F. cirrhosa against tested bacterial and fungal pathogens showed remarkable results with MICs ranging between 6.25-200 µg/mL and 50-400 µg/mL, respectively. Subsequently, these 88 identified phytocompounds were tested for their bioactivity through ADMET prediction by SwissADME and in silico molecular docking studies. Results revealed that Peonidin might have maximum antibacterial and antifungal activity against various microbial protein drug targets among the phytochemical compounds identified. Furthermore, the highest binding affinity complex was subjected to molecular dynamic simulation (MDS) analysis using Desmond Schrodinger v3.8. The root-mean-square deviation (RMSD) graphs obtained through the molecular dynamic simulations indicated the true bonding interactions, further validated using the root-mean-square fluctuation (RMSF) graphs which provided a better understanding of the amino acids present in the proteins responsible for the molecular motions and fluctuations. To our best knowledge, this is the first description of the phytochemical constituents of the bulbs of F.cirrhosa analyzed through LC-MS, which show pharmacological significance. The in silico molecular docking and molecular dynamics study of peonidin was also performed to confirm its broad-spectrum activities based on the binding interactions with the antibacterial and antifungal target proteins. The present study results will create a way for the invention of herbal medicines for several ailments by using F. cirrhosa plants, which may lead to the development of novel drugs.


Assuntos
Fritillaria , Plantas Medicinais , Antocianinas , Antibacterianos/farmacologia , Antifúngicos , Fritillaria/química , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química
7.
J Ethnopharmacol ; 291: 115046, 2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35167935

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Microorganisms are developing resistance to synthetic drugs. As a result, the search for novel antimicrobial compounds has become an urgent need. Medicinal plants are commonly used as traditional medicine and Delphinium is one of the prominent genus used in the treatment of several diseases. AIM OF THE STUDY: The present study aimed to determine the in vitro and in silico antimicrobial activities of petroleum ether, ethyl acetate and methanol extracts from the leaf samples of plant (Delphinium cashmerianum L.) against various bacterial and fungal strains. MATERIAL AND METHODS: Three extracts of Delphinium cashmerianum prepared and 88 bioactive compounds were analyzed through LC-MS data with the vast majority of them having therapeutic applications. These extracts have been screened for the antimicrobial activity against various bacterial (Escherichia coli, Micrococcus luteus, Klebsiella pneumoniae, Streptococcus pneumonia, Haemophilus influenzae, Neisseria mucosa) and fungal (Candida albicans, Candida glabrata, Candida paropsilosis) species through in silico molecular docking approach using autodock vina software, molecular dynamic simulation (MDS), in vitro disc diffusion and broth microdilution method for minimum inhibitory concentration (MIC) evaluation. RESULTS: Our results demonstrated that all three extracts were active against the whole set of microorganisms. The ethyl acetate extract was the most active against S.pneumonia, K. pneumoniae and C. albicans with a minimum inhibitory concentration (MIC) value of 6.25, 25 and 50 µg/ml, respectively. The petroleum ether and methanol extracts were active against S.pneumonia and N.mucosa with MIC values of 25 and 50 µg/ml. Furthermore, we also performed the in silico virtual screening of all these compounds obtained from LC-MS data analysis against various known drug targets of bacterium and fungi. Upon analysis, we obtained 5 compounds that were efficiently binding to the drug targets. However, after performing exhaustive molecular docking and molecular dynamic simulation (MDS) analysis, it was observed that Daidzein compound is bound to drug targets more efficiently. CONCLUSION: The results showed that these plant extracts exhibit antimicrobial activity and ethyl acetate extract proved to exhibit the most effective antibacterial and antifungal properties.


Assuntos
Anti-Infecciosos , Delphinium , Plantas Medicinais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Candida albicans , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Plantas Medicinais/química
8.
J Biomed Nanotechnol ; 17(12): 2298-2318, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974855

RESUMO

Tuberculosis (TB) is still one of the deadliest disease across the globe caused by Mycobacterium tuberculosis (Mtb). Mtb invades host macrophages and other immune cells, modifies their lysosome trafficking proteins, prevents phagolysosomes formation, and inhibits the TNF receptor-dependent apoptosis in macrophages and monocytes. Tuberculosis (TB) killed 1.4 million people worldwide in the year 2019. Despite the advancements in tuberculosis (TB) treatments, multidrugresistant tuberculosis (MDR-TB) remains a severe threat to human health. The complications are further compounded by the emergence of MDR/XDR strains and the failure of conventional drug regimens to eradicate the resistant bacterial strains. Thus, new therapeutic approaches aim to ensure cure without relapse, to prevent the occurrence of deaths and emergence of drug-resistant strains. In this context, this review article summarises the essential nanotechnology-related research outcomes in the treatment of tuberculosis (TB), including drug-susceptible and drug-resistant strains of Mtb. The novel anti-tuberculosis drug delivery systems are also being detailed. This article highlights recent advances in tuberculosis (TB) treatments, including the use of novel drug delivery technologies such as solid lipid nanoparticles, liposomes, polymeric micelles, nano-suspensions, nano-emulsion, niosomes, liposomes, polymeric nanoparticles and microparticles for the delivery of anti-TB drugs and hence eradication and control of both drug-susceptible as well as drug-resistant strains of Mtb.


Assuntos
Antituberculosos , Sistemas de Liberação de Fármacos por Nanopartículas , Tuberculose , Antituberculosos/administração & dosagem , Antituberculosos/uso terapêutico , Humanos , Lipossomos , Tuberculose/tratamento farmacológico
9.
Curr Pharm Biotechnol ; 22(4): 480-500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32600226

RESUMO

Tuberculosis (TB) is a prominent infective disease and a major reason of mortality/ morbidity globally. Mycobacterium tuberculosis causes a long-lasting latent infection in a significant proportion of human population. The increasing burden of tuberculosis is mainly caused due to multi drug-resistance. The failure of conventional treatment has been observed in large number of cases. Drugs that are used to treat extensively drug-resistant tuberculosis are expensive, have limited efficacy, and have more side effects for a longer duration of time and are often associated with poor prognosis. To regulate the emergence of multidrug resistant tuberculosis, extensively drug-resistant tuberculosis and totally drug resistant tuberculosis, efforts are being made to understand the genetic/molecular basis of target drug delivery and mechanisms of drug resistance. Understanding the molecular approaches and pathology of Mycobacterium tuberculosis through whole genome sequencing may further help in the improvement of new therapeutics to meet the current challenge of global health. Understanding cellular mechanisms that trigger resistance to Mycobacterium tuberculosis infection may expose immune associates of protection, which could be an important way for vaccine development, diagnostics, and novel host-directed therapeutic strategies. The recent development of new drugs and combinational therapies for drug-resistant tuberculosis through major collaboration between industry, donors, and academia gives an improved hope to overcome the challenges in tuberculosis treatment. In this review article, an attempt was made to highlight the new developments of drug resistance to the conventional drugs and the recent progress in the development of new therapeutics for the treatment of drugresistant and non-resistant cases.


Assuntos
Antituberculosos/uso terapêutico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Animais , Tuberculose Extensivamente Resistente a Medicamentos/genética , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
10.
Bull Emerg Trauma ; 6(4): 306-312, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30402518

RESUMO

OBJECTIVE: To determine the time to radiological union and final functional outcome of fixation of extra-articular distal humeral fractures with extra-artricular distal humerus locking plate. METHODS: This prospective study was conducted from March 2014 to February 2018 and included extra-articular distal humeral fractures managed by operative fixation using extra-articular distal humerus locking plate. All the fractures were approached using lateral para-tricepetal approach of Gervin, and stabilized with extra-articular distal humerus locking plate with or without lag screws. Time to radiological union was assessed in the follow up and at the final follow up functional outcome was evaluated using Mayo Performance Elbow Score (MEPS). Complications and need for any additional procedures was also recorded. RESULTS: A total of 20 patients with mean age of 36.5 years and an average follow up of 17 months were included. The mean time to radiological union was 17.4 weeks (12 to 36 weeks) which included one delayed union that required bone grafting. The mean flexion at elbow was 127o with only one patient having flexion extension arc movement of less than 100o at the final follow up. The average MEPS at final follow up was 94.7±8 with 19 patients having excellent and good results. CONCLUSION: Use of extra-articular distal humeral locking plate using lateral para-tricepetal approach in extra-articular distal humeral fractures allows stable fixation of the fracture to allow early return to function with minimal soft tissue dissection and excellent final functional results and minimum complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...