Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36840255

RESUMO

This field experiment focuses on the effects of a heavy rainfall event (DANA, depresión aislada en niveles altos) that occurred on 12-14 September 2019 (DOY, Day of the year, 255-257), in southern Spain on plant water status and the thermal response of nectarine trees. Two irrigation treatments were applied during the summer-autumn postharvest period (DOY 158-329): full-irrigated (CTL) and non-irrigated (DRY). Volumetric soil water content (θv), air temperature (Ta) and canopy temperature (Tc) were monitored in real-time and the crop water stress index (CWSI) was calculated. The difference in Tc between the DRY and CTL treatments (Tc' - Tc) is proposed as a new thermal indicator. Stem water potential (Ψstem) and leaf gas exchange measurements were recorded on representative days. During the DANA event, only the Tc measured by the infrared radiometer sensors could be monitored. Therefore, the effects of the DANA forced the soil water content sensors to be switched off, which prevented Ψstem and leaf gas exchange determinations from DOY 255 to 275. Before the DANA event, withholding irrigation caused a gradual decrease in the soil and plant water status in the DRY treatment. Significant differences appeared between treatments in the studied thermal indexes. Moreover, Tc' - Tc was more sensitive than Tc - Ta in assessing nectarine water stress. The effects of the DANA reduced these differences, suggesting different baselines for the calculation of CWSI. In this respect, the relationship Tc - Ta vs. VPD improved the coefficient of determination after the DANA event in full-irrigated trees. Similar values of Ψstem and leaf gas exchange were found in both treatments after the DANA event, even though thermal indexes showed some significant differences. In addition, the strong relationship found between Tc - Ta and CWSI vs. Ψstem worsened after DANA occurred, revealing a lower sensitivity of Ψstem compared to canopy temperature to accurately assess nectarine water status in these saturated soil conditions. This research underlined the robustness of infrared thermography to continuously monitor plant water status under these extreme weather conditions.

2.
Plants (Basel) ; 12(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36771588

RESUMO

The aim of this study was to test the combined effect of water stress and cropping system on yield and fruit quality in Bearss lime trees. For this purpose, two irrigation treatments were applied during stage II of fruit growth: control (well irrigated, automatically managed by soil water content sensors) and stress (non-irrigated), both under open-field and shaded conditions. Soil water status was assessed by determining soil water content and plant water status by measuring stem water potential (Ψstem), stomatal conductance (gs), and net photosynthesis (Pn). Yield parameters (kg and the number of fruits per tree and fresh mass per fruit) and fruit quality were assessed on two harvest dates. In addition, on the second harvest date, the content of metabolites and nutrients in the lime juice was analyzed. The results showed that soil water deficit induced 35% lower gs values in open-field than in shaded conditions. The highest kg and the number of fruits per tree were observed in the shaded system, especially on the first harvest date. The lowest yield was observed in stressed trees grown without netting. Slightly higher fresh mass and equatorial diameter were observed in shaded fruits than in open-field fruit. Soil water deficit increased fruit total soluble solids and decreased juice content, especially in open-field trees. Shaded conditions made the lime trees more resilient to soil water deficit, which led to higher yields and better external fruit quality traits. In addition, fruit precocity was significantly higher in the shaded system.

3.
Plants (Basel) ; 9(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326660

RESUMO

Physiological plant water status indicators are useful for managing precision irrigation in regions with limited water resources. The aim of this work was to evaluate the effect of shade netting on the diurnal and seasonal variations of several plant water status indicators in young lime trees (Citrus latifolia Tan., cv. Bearss), grown at the CEBAS-CSIC experimental station in Murcia, Spain. Stem water potential (Ψstem), leaf gas exchange (net photosynthesis (Pn) and stomatal conductance (gs)), and canopy temperature (Tc) were measured on representative days of winter and summer. The Ψstem daily pattern was quite similar in both seasons under both conditions. However, the circadian rhythm of leaf gas exchange was affected by shade conditions, especially in summer, when shaded leaves showed maximum gs values for a longer time, allowing higher net photosynthesis (37%). Canopy temperature behaved similarly in both conditions, nevertheless, lower values were recorded in open-air than in shaded trees in the two seasons. The canopy-to-air temperature difference (Tc-Ta), however, was lower in shaded trees during the daylight hours, indicating the higher degree of leaf cooling that was facilitated by high gs values. The possibility of continuously recording Tc makes it (or the proposed canopy thermal index, CTI) a promising index for precise irrigation scheduling. Shade netting was seen to favour gas exchange, suggesting that it may be considered alternative to open-air for use in semi-arid areas threatened by climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...