Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375054

RESUMO

The ubiquity of wearables, coupled with the increasing demand for power, presents a unique opportunity for nanostructured fiber-based mobile energy storage systems. When designing wearable electronic textiles, there is a need for mechanically flexible, low-cost and light-weight components. To meet this demand, we have developed an all-in-one fiber supercapacitor with a total thickness of less than 100 µm using a novel facile coaxial wet-spinning approach followed by a fiber wrapping step. The formed triaxial fiber nanostructure consisted of an inner poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) core coated with an ionically conducting chitosan sheath, subsequently wrapped with a carbon nanotube (CNT) fiber. The resulting supercapacitor is highly flexible, delivers a maximum energy density 5.83 Wh kg-1 and an extremely high power of 1399 W kg-1 along with remarkable cyclic stability and specific capacitance. This asymmetric all-in-one fiber supercapacitor may pave the way to a future generation of wearable energy storage devices.

2.
Adv Sci (Weinh) ; 7(11): 1903501, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537406

RESUMO

Graphene has become an important research focus in many current fields of science including composite manufacturing. Developmental work in the field of graphene-enhanced composites has revealed several functional and structural characteristics that promise great benefits for their use in a broad range of applications. There has been much interest in the production of multiscale high-performance, lightweight, yet robust, multifunctional graphene-enhanced fiber-reinforced polymer (gFRP) composites. Although there are many reports that document performance enhancement in materials through the inclusion of graphene nanomaterials into a matrix, or its integration onto the reinforcing fiber component, only a few graphene-based products have actually made the transition to the marketplace. The primary focus of this work concerns the structural gFRPs and discussion on the corresponding manufacturing methodologies for the effective incorporation of graphene into these systems. Another important aspect of this work is to present recent results and highlight the excellent functional and structural properties of the resulting gFRP materials with a view to their future applications. Development of clear standards for the assessment of graphene material properties, improvement of existing materials and scalable manufacturing technologies, and specific regulations concerning human health and environmental safety are key factors to accelerate the successful commercialization of gFRPs.

3.
Soft Robot ; 4(4): 421-430, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29251569

RESUMO

The demands for new types of artificial muscles continue to grow and novel approaches are being enabled by the advent of new materials and novel fabrication strategies. Self-powered actuators have attracted significant attention due to their ability to be driven by elements in the ambient environment such as moisture. In this study, we demonstrate the use of twisted and coiled wet-spun hygroscopic chitosan fibers to achieve a novel torsional artificial muscle. The coiled fibers exhibited significant torsional actuation where the free end of the coiled fiber rotated up to 1155 degrees per mm of coil length when hydrated. This value is 96%, 362%, and 2210% higher than twisted graphene fiber, carbon nanotube torsional actuators, and coiled nylon muscles, respectively. A model based on a single helix was used to evaluate the torsional actuation behavior of these coiled chitosan fibers.


Assuntos
Órgãos Artificiais , Músculos , Robótica , Materiais Biomiméticos , Nanotubos de Carbono , Resistência à Tração
4.
ACS Nano ; 10(10): 9129-9135, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27607843

RESUMO

Highly stretchable, actuatable, electrically conductive knitted textiles based on Spandex (SPX)/CNT (carbon nanotube) composite yarns were prepared by an integrated knitting procedure. SPX filaments were continuously wrapped with CNT aerogel sheets and supplied directly to an interlocking circular knitting machine to form three-dimensional electrically conductive and stretchable textiles. By adjusting the SPX/CNT feed ratio, the fabric electrical conductivities could be tailored in the range of 870 to 7092 S/m. The electrical conductivity depended on tensile strain, with a linear and largely hysteresis-free resistance change occurring on loading and unloading between 0% and 80% strain. Electrothermal heating of the stretched fabric caused large tensile contractions of up to 33% and generated a gravimetric mechanical work capacity during contraction of up to 0.64 kJ/kg and a maximum specific power output of 1.28 kW/kg, which far exceeds that of mammalian skeletal muscle. The knitted textile provides the combination of strain sensing and the ability to control dimensions required for smart clothing that simultaneously monitors the wearer's movements and adjusts the garment fit or exerts forces or pressures on the wearer, according to needs. The developed processing method is scalable for the fabrication of industrial quantities of strain sensing and actuating smart textiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...