Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chromosoma ; 125(1): 75-93, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26188466

RESUMO

The regulation of chromatin by epigenetic mechanisms plays a central role in gene expression and is essential for development and maintenance of cell identity and function. Aberrant chromatin regulation is observed in many diseases where it leads to defects in epigenetic gene regulation resulting in pathological gene expression programmes. These defects are caused by inherited or acquired mutations in genes encoding enzymes that deposit or remove DNA and histone modifications and that shape chromatin architecture. Chromatin deregulation often results in neurodevelopmental disorders and intellectual disabilities, frequently linked to physical and developmental abnormalities, but can also cause neurodegenerative diseases, immunodeficiency, or muscle wasting syndromes. Epigenetic diseases can either be of monogenic origin or manifest themselves as complex multifactorial diseases such as in congenital heart disease, autism spectrum disorders, or cancer in which mutations in chromatin regulators are contributing factors. The environment directly influences the epigenome and can induce changes that cause or predispose to diseases through risk factors such as stress, malnutrition or exposure to harmful chemicals. The plasticity of chromatin regulation makes targeting the enzymatic machinery an attractive strategy for therapeutic intervention and an increasing number of small molecule inhibitors against a variety of epigenetic regulators are in clinical use or under development. In this review, we will give an overview of the molecular lesions that underlie epigenetic diseases, and we will discuss the impact of the environment and prospects for epigenetic therapies.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/enzimologia , Epigênese Genética , Animais , Transtorno do Espectro Autista/genética , Cromatina/efeitos dos fármacos , Cromatina/genética , DNA/metabolismo , Poluentes Ambientais/farmacologia , Feminino , Predisposição Genética para Doença , Cardiopatias/genética , Histonas/metabolismo , Humanos , Masculino , Mutação , Neoplasias/genética , Doenças Neurodegenerativas/genética
2.
Haematologica ; 100(10): 1350-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26069288

RESUMO

Proteasome inhibitor resistance is a challenge for myeloma therapy. Bortezomib targets the ß5 and ß1 activity, but not the ß2 activity of the proteasome. Bortezomib-resistant myeloma cells down-regulate the activation status of the unfolded protein response, and up-regulate ß2 proteasome activity. To improve proteasome inhibition in bortezomib-resistant myeloma and to achieve more efficient UPR activation, we have developed LU-102, a selective inhibitor of the ß2 proteasome activity. LU-102 inhibited the ß2 activity in intact myeloma cells at low micromolar concentrations without relevant co-inhibition of ß1 and ß5 proteasome subunits. In proteasome inhibitor-resistant myeloma cells, significantly more potent proteasome inhibition was achieved by bortezomib or carfilzomib in combination with LU-102, compared to bortezomib/carfilzomib alone, resulting in highly synergistic cytotoxic activity of the drug combination via endoplasmatic reticulum stress-induced apoptosis. Combining bortezomib/carfilzomib with LU-102 significantly prolonged proteasome inhibition and increased activation of the unfolded protein response and IRE1-a activity. IRE1-α has recently been shown to control myeloma cell differentiation and bortezomib sensitivity (Leung-Hagesteijn, Cancer Cell 24:3, 289-304). Thus, ß2-selective proteasome inhibition by LU-102 in combination with bortezomib or carfilzomib results in synergistic proteasome inhibition, activation of the unfolded protein response, and cytotoxicity, and overcomes bortezomib/carfilzomib resistance in myeloma cells in vitro.


Assuntos
Antineoplásicos/farmacologia , Bortezomib/farmacologia , Resistencia a Medicamentos Antineoplásicos , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Anal Biochem ; 451: 1-3, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24486333

RESUMO

Proteasome-Glo is a homogeneous cell-based assay of proteasomal chymotrypsin-like, trypsin-like, and caspase-like activities using luminogenic substrates, commercially available from Promega. Here we report that the background activity from cleavage of the substrate of the trypsin-like sites by nonproteasomal proteases in multiple breast and lung cancer cell lines exceeds the activity of the proteasome. We also observed substantial background chymotrypsin-like activity in some cell lines. Thus, Proteasome-Glo assay must be used with caution, and it is necessary to include a specific proteasome inhibitor to determine the background for each proteasome activity.


Assuntos
Medições Luminescentes , Complexo de Endopeptidases do Proteassoma/análise , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Células HeLa , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Especificidade por Substrato , Tripsina/análise , Tripsina/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(16): E1490-9, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23576735

RESUMO

The estrogen receptor (ER)α drives growth in two-thirds of all breast cancers. Several targeted therapies, collectively termed endocrine therapy, impinge on estrogen-induced ERα activation to block tumor growth. However, half of ERα-positive breast cancers are tolerant or acquire resistance to endocrine therapy. We demonstrate that genome-wide reprogramming of the chromatin landscape, defined by epigenomic maps for regulatory elements or transcriptional activation and chromatin openness, underlies resistance to endocrine therapy. This annotation reveals endocrine therapy-response specific regulatory networks where NOTCH pathway is overactivated in resistant breast cancer cells, whereas classical ERα signaling is epigenetically disengaged. Blocking NOTCH signaling abrogates growth of resistant breast cancer cells. Its activation state in primary breast tumors is a prognostic factor of resistance in endocrine treated patients. Overall, our work demonstrates that chromatin landscape reprogramming underlies changes in regulatory networks driving endocrine therapy resistance in breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Montagem e Desmontagem da Cromatina/fisiologia , Epigênese Genética/fisiologia , Receptor alfa de Estrogênio/metabolismo , Redes Reguladoras de Genes/fisiologia , Transdução de Sinais/fisiologia , Western Blotting , Neoplasias da Mama/metabolismo , Imunoprecipitação da Cromatina , Epigênese Genética/genética , Feminino , Redes Reguladoras de Genes/genética , Humanos , Estimativa de Kaplan-Meier , Células MCF-7 , Análise em Microsséries , Receptores Notch/metabolismo , Transdução de Sinais/genética
5.
J Med Chem ; 56(3): 1262-75, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23320547

RESUMO

Proteasomes degrade the majority of proteins in mammalian cells by a concerted action of three distinct pairs of active sites. The chymotrypsin-like sites are targets of antimyeloma agents bortezomib and carfilzomib. Inhibitors of the trypsin-like site sensitize multiple myeloma cells to these agents. Here we describe systematic effort to develop inhibitors with improved potency and cell permeability, yielding azido-Phe-Leu-Leu-4-aminomethyl-Phe-methyl vinyl sulfone (4a, LU-102), and a fluorescent activity-based probe for this site. X-ray structures of 4a and related inhibitors complexed with yeast proteasomes revealed the structural basis for specificity. Nontoxic to myeloma cells when used as a single agent, 4a sensitized them to bortezomib and carfilzomib. This sensitizing effect was much stronger than the synergistic effects of histone acetylase inhibitors or additive effects of doxorubicin and dexamethasone, raising the possibility that combinations of inhibitors of the trypsin-like site with bortezomib or carfilzomib would have stronger antineoplastic activity than combinations currently used clinically.


Assuntos
Aminoácidos/química , Permeabilidade da Membrana Celular , Inibidores de Proteassoma/química , Tripsina/química , Linhagem Celular , Desenho de Fármacos , Humanos , Modelos Moleculares
6.
Chem Biol ; 18(5): 608-18, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21609842

RESUMO

Proteasomes degrade the majority of proteins in mammalian cells, are involved in the regulation of multiple physiological functions, and are established targets of anticancer drugs. The proteasome has three types of active sites. Chymotrypsin-like sites are the most important for protein breakdown and have long been considered the only suitable targets for antineoplastic drugs; however, our recent work demonstrated that inhibitors of caspase-like sites sensitize malignant cells to inhibitors of the chymotrypsin-like sites. Here, we describe the development of specific cell-permeable inhibitors and an activity-based probe of the trypsin-like sites. These compounds selectively sensitize multiple myeloma cells to inhibitors of the chymotrypsin-like sites, including antimyeloma agents bortezomib and carfilzomib. Thus, trypsin-like sites are cotargets for anticancers drugs. Together with inhibitors of chymotrypsin- and caspase-like sites developed earlier, we provide the scientific community with a complete set of tools to separately modulate proteasome active sites in living cells.


Assuntos
Antineoplásicos/uso terapêutico , Ácidos Borônicos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Inibidores de Proteases/uso terapêutico , Inibidores de Proteassoma , Pirazinas/uso terapêutico , Antineoplásicos/química , Ácidos Borônicos/química , Bortezomib , Domínio Catalítico , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Oligopeptídeos/química , Inibidores de Proteases/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Pirazinas/química , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...