Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 254: 124177, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565509

RESUMO

Ultrasensitive SERS substrates allowed us to detect complex mixtures of coloring components from Meiji Japanese woodblock prints (1868-1912). In museum settings, compositional analyses have limitations due to restrictions to sampling advised by conservators and curators for the adequate preservation of the objects. An additional layer of complexity is brought by the high heterogeneity of heritage materials, usually not resolved with commercial portable instruments. High-performance instruments for in situ analyses are seldom available in museums. Furthermore, the chambers of most instruments for morphological or chemical characterization accommodate small samples rather than large or medium-sized objects. The innovative sampling strategy herein proposed comprises the gentle touch-dry removal of small coloring molecules weakly bound to the surface of heritage objects, transferred through a silicone sampler to planar SERS substrates with selected solvents in a one-step procedure. The analytical protocol reduces the amount of sample necessary for reliable identification of color components down to nanograms. The selectivity of the solvents combined with the geometry of the planar SERS sensing devices produces reliable signals for molecular identification, with no need for incision or wetting of the printed material. Further, 3D Raman imaging allowed us to reach an unprecedented degree of molecular discrimination, advancing previously available minimally-invasive instrumental methods used in heritage science research. The validation with historical inks from Meiji woodblock prints led to the identification of soluble synthetic azo ß-naphthols, barium sulfonic lakes, purple anilines, Prussian blue, glass arsenic sulfides and other traditional coloring media.


Assuntos
Impressão Tridimensional , Análise Espectral Raman , Análise Espectral Raman/métodos , Solventes
2.
Front Chem ; 7: 727, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31709241

RESUMO

Raman spectroscopy and Surface Enhanced Raman Scattering (SERS) were applied to the analysis of blue and black writing inks. SERS was performed by application of plasmonic nanopastes constituted by Ag nanoparticles and Au nanorods directly on inks deposited on paper substrates under laser irradiation of 514 nm. It was found that SERS spectra were largely enhanced compared to Raman spectra and that Ag nanopastes produced much larger enhancements than Au nanopastes, due to a combination of plasmonic resonance, charge transfer, and molecular resonance effects. All analyzed writing inks resulted constituted by Crystal Violet and other triarylmethane dye mixtures, to which sometimes phthalocyanine dyes were also added (for example in Bic pens). SERS was also used for the identification of degradation processes occurring in artificially aged blue pens deposited on paper substrates. It was found that color alteration changed from ink to ink and varied from darkening to discoloration to slight fading, depending on the initial chemical composition. For inks containing Crystal Violet, two mechanisms associated to de-methylation and photo-reduction of excited dye to colorless leuco forms were identified.

3.
Proc Natl Acad Sci U S A ; 115(23): 5932-5937, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784806

RESUMO

The presence of pressure-sensitive tapes (PSTs) on paper artworks, either fortuitous or specifically applied for conservation purposes, is one of the most frequent and difficult issues encountered during restoration. Aged PSTs can damage or disfigure artworks, compromising structural integrity, readability, and enjoyment. Current procedures are often inherently hazardous for artistic media and paper support. Challenged by the necessity to remove PSTs from a contemporary and an ancient drawing (20th century, by artists da Silva and Hayter, and a 16th-century drawing of one figure from the Sistine Chapel by Michelangelo), we addressed this issue from a physicochemical perspective, leveraging colloid and interface science. After a characterization of the specific PSTs present on the artifact, we selected a highly water-retentive hydrogel as the host of 23% wt/wt of "green" organic solvents uniformly dispersed within the gel in the form of nanosized droplets. The double confinement of the organic solvent in the nanodroplets and into the gel network promotes a tailored, controlled removal of PSTs of different natures, with virtually no interaction with the solvent-sensitive artwork. This noninvasive procedure allows complete retrieval of artwork readability. For instance, in the ancient drawing, the PST totally concealed the inscription, "di mano di Michelangelo" ("from Michelangelo's hand"), a possibly false attribution hidden by a collector, which is now perfectly visible and whose origin is currently under investigation. Remarkably, the same methodology was successful for the removal of aged PST adhesive penetrated inside paper fibers of a drawing from the celebrated artist Lucio Fontana.

4.
Talanta ; 181: 448-453, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29426539

RESUMO

The development of protocols for the protection of the large patrimony of works of art created by felt tip pen media since the 1950's requires detailed knowledge of the main dyes constituting commercial ink mixtures. In this work Surface Enhanced Raman Scattering (SERS) and UV-vis spectroscopy were used for the first time for the systematic identification of dye composition in commercial felt tip pens. A large selection of pens comprising six colors of five different brands was analyzed. Intense SERS spectra were obtained for all colors, allowing identification of main dye constituents. Poinceau 4R and Eosin dyes were found to be the main constituents of red and pink colors; Rhodamine and Tartrazine were found in orange and yellow colors; Erioglaucine was found in green and blue colors. UV-vis analysis of the same inks was used to support SERS findings but also to unequivocally assign some uncertain dye identifications, especially for yellow and orange colors. The spectral data of all felt tip pens collected through this work were assembled in a database format. The data obtained through this systematic investigation constitute the basis for the assembly of larger reference databases that ultimately will support the development of conservation protocols for the long term preservation of modern art collections.

5.
RSC Adv ; 8(15): 8365-8371, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35542010

RESUMO

Surface-enhanced Raman spectroscopy (SERS) has been identified as a suitable technique for the analysis of colorants in works of art. Herein, the application of SERS to the identification of dye compositions in historical felt-tip pens is reported, which is of paramount importance for the development of appropriate conservation protocols for historical drawings. In this study, three pens (pink, green, and blue colors) belonging to the film director Federico Fellini were analyzed. SERS measurements were performed directly on the pen lines drawn on a commercial paper by the deposition of Ag colloidal pastes, which allowed fast in situ dye identification without the need for extraction or hydrolysis treatments. Eosin Y was identified as the only dye present in the pink pen ink, whereas erioglaucine was found to be the main dye component in green and blue pen inks. SERS also resulted in highly efficient identification of the individual dyes erioglaucine, crystal violet, and rhodamine present as a mixture in the blue pen ink. The high SERS sensitivity was ascribed to the plasmonic effects and efficient quenching of the fluorescence interference of dyes. A comparison with contemporary pen inks highlighted minor differences in the chemical composition. These results prove that SERS can be used as a fast and sensitive analytical tool for ink analysis that provides invaluable support for the general assessment of the date, provenance, and originality of the historical drawings as well as for the development of preventive conservation protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...