Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 7(1): 430, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293578

RESUMO

This data article presents a compilation of mechanical properties of 630 multi-principal element alloys (MPEAs). Built upon recently published MPEA databases, this article includes updated records from previous reviews (with minor error corrections) along with new data from articles that were published since 2019. The extracted properties include reported composition, processing method, microstructure, density, hardness, yield strength, ultimate tensile strength (or maximum compression strength), elongation (or maximum compression strain), and Young's modulus. Additionally, descriptors (e.g. grain size) not included in previous reviews were also extracted for articles that reported them. The database is hosted and continually updated on an open data platform, Citrination. To promote interpretation, some data are graphically presented.

2.
J Chem Phys ; 128(12): 124508, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18376944

RESUMO

A phenomenological relationship between reduced excess heat capacity of supercooled liquid DeltaC(p)(exc)(T(g))DeltaS(m) at the glass transition temperature T(g), fragility index m, and reduced glass transition temperature T(rg)=T(g)T(m), where T(m) is the melting (liquidus) temperature, was derived for fragile nonpolymeric glass-forming liquids under the assumptions that the fragile behavior of these liquids is described by the Vogel-Fulcher-Tammann (VFT) equation; the excess heat capacity of liquid is inversely proportional to the absolute temperature and the VFT temperature T(0) is equal to the Kauzmann temperature T(K). It was found that DeltaC(p)(exc)(T(g))DeltaS(m) is a composite function of m and T(rg), which indicates that the empirical correlation DeltaC(p)(exc)(T(g))DeltaS(m)=0.025m recently identified by Wang et al. [J. Chem Phys. 125, 074505 (2006)] is probably valid only for liquids which have nearly the same values of T(rg).

3.
Nat Mater ; 3(10): 697-702, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15378050

RESUMO

Despite the intense interest in metallic glasses for a variety of engineering applications, many details of their structure remain a mystery. Here, we present the first compelling atomic structural model for metallic glasses. This structural model is based on a new sphere-packing scheme-the dense packing of atomic clusters. Random positioning of solvent atoms and medium-range atomic order of solute atoms are combined to reproduce diffraction data successfully over radial distances up to approximately 1 nm. Although metallic glasses can have any number of chemically distinct solute species, this model shows that they contain no more than three topologically distinct solutes and that these solutes have specific and predictable sizes relative to the solvent atoms. Finally, this model includes defects that provide richness to the structural description of metallic glasses. The model accurately predicts the number of solute atoms in the first coordination shell of a typical solvent atom, and provides a remarkable ability to predict metallic-glass compositions accurately for a wide range of simple and complex alloys.


Assuntos
Vidro/química , Metais/química , Modelos Moleculares , Cristalografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...