Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 138: 112561, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38941673

RESUMO

Psoriasis, a chronic autoimmune skin disorder, causes rapid and excessive skin cell growth due to immune system dysfunction. Numerous studies have shown that flavonoids have anti-psoriatic effects by modulating various molecular mechanisms involved in inflammation, cytokine production, keratinocyte proliferation, and more. This study reviewed experimental data reported in scientific literature and used network analysis to identify the potential biological roles of flavonoids' targets in treating psoriasis. 947 records from Web of Sciences, ScienceDirect database, Scopus, PubMed, and Cochrane library were reviewed without limitations until June 26, 2023. 66 articles were included in the systematic review. The ten genes with the highest scores, including interleukin (IL)-10, IL-12A, IL-1ß, IL-6, Tumor necrosis factor-α (TNF-α), Janus kinase 2 (JAK 2), Jun N-terminal kinase (JUN), Proto-oncogene tyrosine-protein kinase Src (SRC), Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and Signal transducer and activator of transcription 3 (STAT3), were identified as the hub genes. KEGG pathway analysis identified connections related to inflammation and autoimmune responses, which are key characteristics of psoriasis. IL-6, STAT3, and JUN's presence in both hub and enrichment genes suggests their important role in flavonoid's effect on psoriasis. This comprehensive study highlights how flavonoids can target biological processes in psoriasis, especially when combined for enhanced effectiveness.

2.
Rep Biochem Mol Biol ; 9(1): 8-13, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32821746

RESUMO

BACKGROUND: Glutathione S-transferases (GSTs) protect cells from oxidative stress (OS). In humans, the GST omega class contains two expressed genes, GSTO1 and GSTO2. Because OS is involved in the pathogenesis of polycystic ovary syndrome (PCOS), the aim of this study was to investigate the relationship between GSTO1 A140D (rs4925) and GSTO2 N142D (rs156697) polymorphisms in PCOS patients. METHODS: 175 PCOS patients and 161 healthy controls were selected among women in Kermanshah province, Iran. GSTO1 and GSTO2 were genotyped using allele-specific PCR (AS-PCR) and PCR-RFLP, respectively. RESULTS: For GSTO1, the DD genotype and the D allele led to 2.17- (P= 0.02) and 1.5-fold (P= 0.01) increases, respectively, in the odds ratios for PCOS. No significant difference was found between control and patient groups for the GSTO2 N142D genotype or allele frequency. GSTO1 and GSTO2 genotype interaction analysis showed that individuals with the GSTO1 AD or DD genotypes and the GSTO2 NN or DN genotypes had a 1.53-fold (P= 0.007) increase in PCOS risk over GSTO1 AA and GSTO2 DD individuals. CONCLUSION: The GSTO1 A140D polymorphism is a risk factor for PCOS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...