Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 925: 171811, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508263

RESUMO

The composition and functioning of soil bacterial communities, as well as their responses to multiple perturbations, are not well understood in the terrestrial ecosystems. Our study focuses on the bacterial community of erosive and poorly developed soils (Haplic Leptosols) in Mediterranean rangelands of Extremadura (W Spain) with different grazing intensities. Leptosols from similar natural conditions were selected and sampled at two depths to determine the soil properties as well as the structure and activity of bacterial communities. As grazing intensified, the soil C and N content increased, as did the number and diversity of bacteria, mainly of fast-growing lineages. Aridibacter, Acidobacteria Gp6 and Gp10, Gemmatimonas, and Segetibacter increased their abundance along the grazing-intensity gradient. Firmicutes such as Romboutsia and Turicibacter from livestock microbiome also increased. In functional terms, the KEGG pathways enriched in the soils with moderate and high grazing intensity were ABC transporters, DNA repair and recombination proteins, the two-component system, and the degradation of xenobiotics. All of these proved to be related to stronger cell division and response mechanisms to environmental stressors such as drought, warming, toxic substances, and nutrient deprivation. Consequently, the bacterial community was affected by grazing, but appeared to adapt and counteract the effects of a high grazing intensity. Therefore, a clearly detrimental effect of grazing was not detected in the bacterial community of the soils studied.


Assuntos
Ecossistema , Microbiota , Animais , Gado , Microbiologia do Solo , Bactérias/genética , Acidobacteria , Solo/química
2.
J Environ Manage ; 354: 120316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382429

RESUMO

Traditional management practices, such as grazing, can have adverse impact on soils. Despite an extensive body of literature exploring the effects of grazing on soil and plants worldwide, there is a notable lack of research on its impacts in Mediterranean forests within the Iberian Peninsula Furthermore, there is a knowledge gap on the enzymatic activities and basal respiration of soil in forest after grazing. To address these gaps, this study aimed to investigate the impact of grazing on various important physicochemical and biological soil properties along with vegetation richness in a Mediterranean forest located in Castilla-La Mancha (Central Eastern Spain). Relative to undisturbed sites, grazing significantly reduced soil water content (-53%) and available water (-59%). However, soil hydraulic conductivity remained unaffected by animal trampling and the soil water repellency observed in ungrazed sites disappeared. Grazed soils experienced a slight increase in pH (+18%). Among the biochemical properties studied, only dehydrogenase showed a significant increase (+100%) while basal respiration exhibited a notable decrease (-24%). Grazing resulted in a reduction of plant species richness (-34%) indicating a loss of biodiversity in grazed areas. The observed significant alterations in key soil and plant properties due to livestock activity suggest that grazing has the potential to modify the overall soil quality of these sites. Certain variables that exhibited noteworthy differences between grazed and ungrazed sites could serve as indicators of grazing impacts in Mediterranean forests. These indicators may be considered proxies for establishing effective land management strategies to mitigate degradation in the Mediterranean forest ecosystem.


Assuntos
Ecossistema , Solo , Animais , Solo/química , Espanha , Florestas , Plantas , Água
3.
Microorganisms ; 11(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37512933

RESUMO

We examined fungal communities in soil profiles of 0-10 cm depth along the altitudinal gradient of 250-530-990 m.a.s.l. at the Central Negev Desert, Israel, which benefit from similar annual precipitation (95 mm). In the soil samples collected in the summer of 2020, a mycobiota accounting for 169 species was revealed by both culture-dependent and culture-independent (DNA-based) methodologies. The impact of soil depth on the variations in fungal communities was stronger than the impact of altitude. Both methodologies displayed a similar tendency in the composition of fungal communities: the prevalence of melanin-containing species with many-celled large spores (mainly Alternaria spp.) in the uppermost layers and the depth-wise increase in the proportion of light-colored species producing a high amount of small one-celled spores. The culturable and the DNA-based fungal communities had only 13 species in common. The differences were attributed to the pros and cons of each method. Nevertheless, despite the drawbacks, the employment of both methodologies has an advantage in providing a more comprehensive picture of fungal diversity in soils.

4.
Sci Total Environ ; 900: 165179, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37385505

RESUMO

Intensive agriculture relies on external inputs to reach high productivity and profitability. Plastic mulch, mainly in the form of Low-Density Polyethylene (LDPE), is widely used in agriculture to decrease evaporation, increase soil temperature and prevent weeds. The incomplete removal of LDPE mulch after use causes plastic contamination in agricultural soils. In conventional agriculture, the use of pesticides also leaves residues accumulating in soils. Thus, the objective of this study was to measure plastic and pesticide residues in agricultural soils and their effects on the soil microbiome. For this, we sampled soil (0-10 cm and 10-30 cm) from 18 parcels from 6 vegetable farms in SE Spain. The farms were under either organic or conventional management, where plastic mulch had been used for >25 years. We measured the macro- and micro-light density plastic debris contents, the pesticide residue levels, and a range of physiochemical properties. We also carried out DNA sequencing on the soil fungal and bacterial communities. Plastic debris (>100 µm) was found in all samples with an average number of 2 × 103 particles kg-1 and area of 60 cm2 kg-1. We found 4-10 different pesticide residues in all conventional soils, for an average of 140 µg kg-1. Overall, pesticide content was ∼100 times lower in organic farms. The soil microbiomes were farm-specific and related to different soil physicochemical parameters and contaminants. Regarding contaminants, bacterial communities responded to the total pesticide residues, the fungicide Azoxystrobin and the insecticide Chlorantraniliprole as well as the plastic area. The fungicide Boscalid was the only contaminant to influence the fungal community. The wide spread of plastic and pesticide residues in agricultural soil and their effects on soil microbial communities may impact crop production and other environmental services. More studies are required to evaluate the total costs of intensive agriculture.


Assuntos
Fungicidas Industriais , Microbiota , Resíduos de Praguicidas , Praguicidas , Solo/química , Resíduos de Praguicidas/análise , Verduras , Polietileno , Agricultura , Praguicidas/análise
5.
J Environ Manage ; 327: 116873, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470184

RESUMO

Soils are considered as a major reservoir for terrestrial carbon and it can act as a source or sink depending upon the land management activities. In semi-arid areas, the natural recovery of soils degraded by mining activities is complicated. A possible solution to recover soil quality and functionality, plant cover and carbon sequestration capacity could be the application of organic amendments. This work focuses on a restoration carried out in 2018 by applying with different composted organic amendments (stabilized sludge, gardening and greenhouse waste) in a limestone quarry under semi-arid climate (SE Spain). The objective was to evaluate the effects of different organic amendments on net CO2 exchange in two microcosms: soil-Stipa tenacissima and soil-spontaneous vegetation. Soil physical and chemical properties, environmental and ecological variables and their interrelationship were studied in amended and unamended soils. The results obtained under soil-forming factors in the study area showed an increase in soil organic carbon and nitrogen content, improved moisture and plant growth, and plant canopy development in amended soils. Soil moisture, soil temperature and plant cover significantly influenced net CO2 exchange. In general, microcosms with S. tenacissima showed higher carbon sequestration rates than soils with only spontaneous plant cover. Soils treated with a vegetable-only amendments showed higher plant cover and CO2 fixation rates after significant rainfall. On the other hand, the plots treated with sludge compost presented more soil respiration than photosynthesis, especially in the wet seasons. Soils with sludge and greenhouse compost mixed had higher CO2 fixation rates than soils restored with a mixture of sludge and garden compost. Soils with greenhouse waste compost showed CO2 fixation in the microcosm with plants in all campaigns, being the best treatment to promote atmospheric CO2 sequestration in soil restoration.


Assuntos
Carbono , Solo , Solo/química , Esgotos , Sequestro de Carbono , Dióxido de Carbono
6.
Sci Total Environ ; 857(Pt 2): 159489, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36257432

RESUMO

Soils of Mediterranean forests can be severely degraded due to wildfire. However, post-fire management techniques, such as soil mulching with vegetal residues, can limit degradation and increase functionality of burned soils. The effects of post-fire mulching on soil functionality have been little studied in Mediterranean forests, and it is still unclear whether the application of straw or wood residues is beneficial. This study explores the changes in important soil chemical and biochemical properties in a pine forest of Central Eastern Spain after a wildfire and post-fire mulching with straw or wood chips. Only basal soil respiration (BSR), dehydrogenase activity (DHA), pH and water field capacity (WFC) significantly changed after the fire and mulching. In contrast, the other enzymatic activities - urease (UA), alkaline phosphatase (Alk-PA) and ß-glucosidase (BGA), - total organic carbon (TOC) and electrical conductivity (EC) were not influenced by these soil disturbances. Time from fire and soil conditions (due to burning and management) were significant variability factors for BSR, pH, BGA, UA, TOC, EC. Mulching increased BSR compared to burned areas, especially in soils with straw (+30 %), thanks to addition of fresh organic residues, quickly incorporated in the soil. Soil pH showed a low variability among the four soil conditions, and TOC was higher in mulched soils (on average + 20 % compared to the burned soils), and this was correlated to the increased BSR. The role of mulching was essential with reference to WFC, as the post-fire management limited its reduction after the fire (on average from -30 % to -20 %). Finally, the Principal Component Analysis coupled to the Analytical Hierarchical Cluster Analysis confirmed the significant influence of the post-fire management on some enzymatic activities, although a sharp discrimination among the four soil conditions was only evident between unburned and burned sites, regardless of the management. Overall, it has been shown that mulching promotes conservation of fragile Mediterranean soils, indicating its effectiveness at preserving soil functionality in areas affected by forest fires.


Assuntos
Incêndios , Pinus , Solo/química , Triticum , Madeira , Florestas , Água
7.
Sci Total Environ ; 815: 152894, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998748

RESUMO

Eco-engineering techniques are generally effective at reducing soil erosion and restore vegetal cover after wildfire. However, less evidence exists on the effects of the post-fire eco-engineering techniques to restore plant diversity. To fill this knowledge gap, a standardized regional-scale analysis of the influence of post-fire eco-engineering techniques (log erosion barriers, contour felled log debris, mulching, chipping and felling, in some cases with burning) on species richness and diversity is proposed, adopting the Iberian Peninsula as case study. In general, no significant differences in species richness and diversity (Shannon) were found between the forest treated with different post-fire eco-engineering techniques, and the burned and non-treated soils. Only small significant differences were found for some sites treated with log erosion barriers or mulching. The latter technique increased species richness and diversity in some pine species and shrublands. Contour felled log debris with burning slightly increased vegetation diversity, while log erosion barriers, chipping and felling were not successful in supporting plant diversity. This research will help forest managers and agents in Mediterranean forest to decide the best postfire management option for wildfire affected forest, and in the development of more effective post-fire strategies.


Assuntos
Incêndios , Incêndios Florestais , Florestas , Plantas , Solo
8.
Environ Sci Pollut Res Int ; 29(7): 10366-10379, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34519983

RESUMO

Air pollution around refineries and factories is one of the major environmental challenges affecting forest ecosystems' health. Although there have been many studies on Iran's forest ecosystems, the physiological and morphological responses of Brant's oak (Quercus brantii Lindl.) leaves to the pollution of the gas refineries in the semiarid forests have not received much attention. We sampled healthy and mature leaves from four oak stands in different seasons (spring, summer, and autumn of 2019) and at various distances from the gas refinery (1,000, 1,500, 2,000, 2,500, and 10,000 m). The results showed that oak trees in different seasons and at different distances from the refinery had different physiological and morphological leaf trait responses to the pollution source. Oak trees with an air pollution tolerance index value of less than 11 were in a sensitive range to air pollution and can be used to biomonitor air pollution around the gas refinery in Zagros forests. Physiological traits in different seasons and at various distances in comparison with morphological traits (persistent reaction responses) were well distinguished from one another and were more affected by pollution. Oak trees in summer and autumn and at distances up to 2,500 m had rapid reaction responses, including oxidative stress indicators such as electrolyte leakage (EL), hydrogen peroxide, and different enzymatic and nonenzymatic antioxidants such as phenol, flavonoids, catalase, and proline. Because of their high sensitivity to atmospheric pollutant stresses, we recommend that these traits be used for rapid and low-cost environmental monitoring of pollution in different seasons and distances from pollution sources in semiarid ecosystems.


Assuntos
Quercus , Ecossistema , Florestas , Irã (Geográfico) , Folhas de Planta , Estações do Ano , Árvores
9.
Sci Total Environ ; 816: 151572, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34774628

RESUMO

This study aims to evaluate the effects of technosols made with different organic amendments to restore degraded soils in a semiarid limestone quarry. The effects on soil quality, functionality and organic matter dynamics of the technosols amended with waste of gardening, greenhouse horticultural, stabilized sewage sludge and two mixtures of sludge with both vegetable composts were assessed. Several physical and chemical properties, humus fractions, soil respiration and molecular composition was performed after 6 and 18 months. Un-amended soils, and nearby natural undegraded soils served as reference. Amended technosols increased water retention capacity, electrical conductivity, total organic carbon and nitrogen, respect to not amended and natural soils. Humus fraction composition was not altered over time. Un-amended soils, very poor in organic matter, did not show any pyrolyzable compounds or labile soil organic matter by thermogravimetry. In contrast, the pyrochromatograms of natural soils showed lignocellulosic materials, polypeptides and a noticeable presence of alkylic compounds. In technosols with both types vegetable compost, the organic matter structure was more complex, showing compounds from lignin-derived and long-chain alkyl, polysaccharides, chlorophyll isoprenoids and nitrogen. In sludge technosol, a set of sterols was outstanding. The mixtures showed a molecular fingerprint of materials derived from the decomposition of the organic amendments that formed them. These signs of the contribution of different organic matter forms derived from the amendments were also reported by the series exothermic peaks found in the calorimetry. This short-term study indicates a clear effect of the amendments on the recovery of soil organic matter and presumably of its functionality. After the amendments application, microbial activity and soil respiration rates increased rapidly but ceased 18 months later. The molecular composition of the organic matter of the soils amended with plant compost was very similar to that of natural, non-degraded soils in nearby areas.


Assuntos
Compostagem , Poluentes do Solo , Clima , Nitrogênio , Esgotos , Solo , Poluentes do Solo/análise
10.
mSystems ; 6(6): e0075221, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34812648

RESUMO

The application of organic amendments to mining soils has been shown to be a successful method of restoration, improving key physicochemical soil properties. However, there is a lack of a clear understanding of the soil bacterial community taxonomic and functional changes that are brought about by these treatments. We present further metagenomic sequencing (MGS) profiling of the effects of different restoration treatments applied to degraded, arid quarry soils in southern Spain which had previously been profiled only with 16S rRNA gene (16S) and physicochemical analyses. Both taxonomic and functional MGS profiles showed clear separation of organic treatment amendments from control samples, and although taxonomic differences were quite clear, functional redundancy was higher than expected and the majority of the latter signal came from the aggregation of minor (<0.1%) community differences. Significant taxonomic differences were seen with the presumably less-biased MGS-for example, the phylum Actinobacteria and the two genera Chloracidobacterium (Acidobacteria) and Paenibacillus (Firmicutes) were determined to be major players by the MGS and this was consistent with their potential functional roles. The former phylum was much less present, and the latter two genera were either minor components or not detected in the 16S data. Mapping of reads to MetaCyc/BioCyc categories showed overall slightly higher biosynthesis and degradation capabilities in all treatments versus control soils, with sewage amendments showing highest values and vegetable-based amendments being at intermediate levels, matching higher nutrient levels, respiration rates, enzyme activities, and bacterial biomass previously observed in the treated soils. IMPORTANCE The restoration of soils impacted by human activities poses specific challenges regarding the reestablishment of functional microbial communities which will further support the reintroduction of plant species. Organic fertilizers, originating from either treated sewage or vegetable wastes, have shown promise in restoration experiments; however, we still do not have a clear understanding of the functional and taxonomic changes that occur during these treatments. We used metagenomics to profile restoration treatments applied to degraded, arid quarry soils in southern Spain. We found that the assortments of individual functions and taxa within each soil could clearly identify treatments, while at the same time they demonstrated high functional redundancy. Functions grouped into higher pathways tended to match physicochemical measurements made on the same soils. In contrast, significant taxonomic differences were seen when the treatments were previously studied with a single marker gene, highlighting the advantage of metagenomic analysis for complex soil communities.

11.
Sci Total Environ ; 794: 148491, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34217081

RESUMO

Biocrusts are an essential soil surface cover at drylands where ecosystems are especially fragile to soil degradation processes due to climatic peculiarities. In the present work, (micro)biological and physicochemical properties indicative of soil functionality were studied in two different biocrust types dominated by Dipolschistes diacapsis and Lepraria isidiata and in underlying soil at two different depths (SL1, soil layer right below the biocrusts, and SL2, soil layer underlying SL1) at the Tabernas desert (southeast Spain). The influence of climatic factors (rainfall and temperature) and general soil properties on the (micro)biological properties were also analyzed in different environmental (climatic) conditions over a period of two years. PERMANOVA analyses showed significant statistical differences (Pseudo-F = 63.9; P (perm) = 0.001) among biocrust and soil layers. Throughout the study period, enzyme activities involved in C, N, and P cycles; microbial biomass-C; basal respiration; and several properties directly related to ecosystem productivity (total organic carbon, total nitrogen, concentration of ammonium and nitrate) were higher in both biocrust types than in the underlying soil layers, showing that biocrusts improved soil functions related to nutrient cycling. These properties progressively diminished in successive soil layers under the biocrusts (biocrusts > SL1 > SL2). Biocrusts showed greater similarity to each other and to SL1 than to SL2 in (micro)biological properties. A distance-based linear model analysis showed that total organic carbon, rainfall, pH, mineralized N-NH4+, and total nitrogen were the most important variables for predicting (micro)biological soil properties in biocrusts. Different biochemical behavior between the biocrusts and successive underlying soil layers has been found in wet periods. After rainfall periods, the biocrusts showed important peaks in basal soil respiration and in enzyme activities involved in C and P cycles. Nevertheless, soil biochemical properties hardly showed any peak in SL1 and did not change in SL2 despite soil moisture being higher in the soil layers below the biocrusts. Correlation analyses corroborated the existence of different relationships between soil moisture and enzymatic activities. In biocrusts, soil moisture showed a greater number of significant positive correlations with enzymes such as ß-glucosidase, invertase, and phosphomonoesterase among others, whereas in SL1 it was only correlated with cellulase and in SL2 with dehydrogenase. A change in rainfall regime, as predicted by models based on climate change in arid and semiarid zones, could affect the activity of soil enzymes in the biocrusts and underlying layers, thus aggravating the degradation of these fragile dryland ecosystems.


Assuntos
Briófitas , Líquens , Ascomicetos , Ecossistema , Solo , Microbiologia do Solo
12.
Sci Total Environ ; 778: 146310, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030366

RESUMO

Reforestation may help protect the health of endangered forest ecosystems. To implement this action, it is important to evaluate the effects of the planted species on soil quality. Previous studies have demonstrated that soil properties are closely driven by the effects of plant roots and plant remains (quantity and quality) reaching the soil surface. However, little research is available about the effects of plant species on soil quality of reforested sites compared to natural forest ecosystems. This study evaluates the changes in the main soil properties between two 30-40 year-old stand types in forest areas of northern Iran: i) two stands, each one comprising a natural species (Parrotia persica or Pinus taeda); and ii) two stands, each one with planted trees (Quercus castaneifolia or Alnus glutinosa). Compared to reforested sites, the soils with natural trees showed higher root weight density (+43%), pH (+17%), and organic carbon (+64%). These differences led to higher nutrient contents, microbial respiration, aggregate stability, and water retention in soils with natural trees, as confirmed by the correlation analysis. A principal component analysis provided a meaningful combined factor (the first principal component) that showed a clear discrimination in soil quality and fertility among natural and reforested species. The calculation of a soil quality index confirms that planted species may lead to an overall lower quality of soils with planted species compared to natural forest. Since the lower soil quality of planted forests can be also the result of unsuitable management practices, this study suggest that forest operations in reforested areas should be avoided, since this could lead to negative effects on soil quality and contribute to an increase in the risk of soil degradation.


Assuntos
Ecossistema , Solo , Florestas , Irã (Geográfico) , Microbiologia do Solo , Árvores
13.
Sci Rep ; 7(1): 14593, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29109410

RESUMO

Current research on the influence of environmental and physicochemical factors in shaping the soil bacterial structure has seldom been approached from a pedological perspective. We studied the bacterial communities of eight soils selected along a pedogenic gradient at the local scale in a Mediterranean calcareous mountain (Sierra de María, SE Spain). The results showed that the relative abundance of Acidobacteria, Canditate division WPS-1, and Armatimonadetes decreased whereas that of Actinobacteria, Bacteroidetes, and Proteobacteria increased from the less-developed soils (Leptosol) to more-developed soils (Luvisol). This bacterial distribution pattern was also positively correlated with soil-quality parameters such as organic C, water-stable aggregates, porosity, moisture, and acidity. In addition, at a lower taxonomic level, the abundance of Acidobacteria Gp4, Armatimonadetes_gp4, Solirubrobacter, Microvirga, Terrimonas, and Nocardioides paralleled soil development and quality. Therefore, our work indicates that the composition of bacterial populations changes with pedogenesis, which could be considered a factor influencing the communities according to the environmental and physicochemical conditions during the soil formation.


Assuntos
Microbiologia do Solo , Solo/química , Solo/classificação , Altitude , Bactérias/genética , Biologia Computacional , Plantas , RNA Bacteriano , RNA Ribossômico 16S , Espanha
14.
J Immunol ; 194(5): 2190-8, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25624456

RESUMO

Germline GATA2 mutations have been identified as the cause of familial syndromes with immunodeficiency and predisposition to myeloid malignancies. GATA2 mutations appear to cause loss of function of the mutated allele leading to haploinsufficiency; however, this postulate has not been experimentally validated as the basis of these syndromes. We hypothesized that mutations that are translated into abnormal proteins could affect the transcription of GATA2, triggering GATA2 deficiency. Chromatin immunoprecipitation and luciferase assays showed that the human GATA2 protein activates its own transcription through a specific region located at -2.4 kb, whereas the p.Thr354Met, p.Thr355del, and p.Arg396Gln germline mutations impair GATA2 promoter activation. Accordingly, GATA2 expression was decreased to ∼58% in a patient with p.Arg396Gln, compared with controls. p.Arg396Gln is the second most common mutation in these syndromes, and no previous functional analyses have been performed. We therefore analyzed p.Arg396Gln. Our data show that p.Arg396Gln is a loss-of-function mutation affecting DNA-binding ability and, as a consequence, it fails to maintain the immature characteristics of hematopoietic stem and progenitor cells, which could result in defects in this cell compartment. In conclusion, we show that human GATA2 binds to its own promoter, activating its transcription, and that the aforementioned mutations impair the transcription of GATA2. Our results indicate that they can affect other GATA2 target genes, which could partially explain the variability of symptoms in these diseases. Moreover, we show that p.Arg396Gln is a loss-of-function mutation, which is unable to retain the progenitor phenotype in cells where it is expressed.


Assuntos
Fator de Transcrição GATA2/genética , Mutação em Linhagem Germinativa , Síndromes de Imunodeficiência/imunologia , Infecção por Mycobacterium avium-intracellulare/imunologia , Transcrição Gênica , Alelos , Sítios de Ligação , Linhagem Celular Tumoral , Feminino , Fator de Transcrição GATA2/imunologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Haploinsuficiência , Humanos , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/patologia , Pessoa de Meia-Idade , Modelos Moleculares , Complexo Mycobacterium avium/imunologia , Infecção por Mycobacterium avium-intracellulare/complicações , Infecção por Mycobacterium avium-intracellulare/genética , Infecção por Mycobacterium avium-intracellulare/patologia , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais
15.
Cardiovasc Pathol ; 22(3): 228-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23200275

RESUMO

BACKGROUND: BMPER, an orthologue of Drosophila melanogaster Crossveinless-2, is a secreted factor that regulates bone morphogenetic protein activity in endothelial cell precursors and during early cardiomyocyte differentiation. Although previously described in the heart, the role of BMPER in cardiac development and function remain unknown. METHODS: BMPER-deficient hearts were phenotyped histologically and functionally using echocardiography and Doppler analysis. Since BMPER -/- mice die perinatally, adult BMPER +/- mice were challenged to pressure-overload-induced cardiac hypertrophy and hindlimb ischemia to determine changes in angiogenesis and regulation of cardiomyocyte size. RESULTS: We identify for the first time the cardiac phenotype associated with BMPER haploinsufficiency. BMPER messenger RNA and protein are present in the heart during cardiac development through at least E14.5 but is lost by E18.5. BMPER +/- ventricles are thinner and less compact than sibling wild-type hearts. In the adult, BMPER +/- hearts present with decreased anterior and posterior wall thickness, decreased cardiomyocyte size and an increase in cardiac vessel density. Despite these changes, BMPER +/- mice respond to pressure-overload-induced cardiac hypertrophy challenge largely to the same extent as wild-type mice. CONCLUSION: BMPER appears to play a role in regulating both vessel density and cardiac development in vivo; however, BMPER haploinsufficiency does not result in marked effects on cardiac function or adaptation to pressure overload hypertrophy.


Assuntos
Proteínas de Transporte/metabolismo , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/citologia , Neovascularização Fisiológica/fisiologia , Animais , Western Blotting , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Crescimento Celular , Vasos Coronários/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
16.
EMBO J ; 31(6): 1494-505, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22266796

RESUMO

The t(8;21) and t(16;21) that are associated with acute myeloid leukaemia disrupt two closely related genes termed Myeloid Translocation Genes 8 (MTG8) and 16 (MTG16), respectively. Many of the transcription factors that recruit Mtg16 regulate haematopoietic stem and progenitor cell functions and are required to maintain stem cell self-renewal potential. Accordingly, we found that Mtg16-null bone marrow (BM) failed in BM transplant assays. Moreover, when removed from the animal, Mtg16-deficient stem cells continued to show defects in stem cell self-renewal assays, suggesting a requirement for Mtg16 in this process. Gene expression analysis indicated that Mtg16 was required to suppress the expression of several key cell-cycle regulators including E2F2, and chromatin immunoprecipitation assays detected Mtg16 near an E2A binding site within the first intron of E2F2. BrdU incorporation assays indicated that in the absence of Mtg16 more long-term stem cells were in the S phase, even after competitive BM transplantation where normal stem and progenitor cells are present, suggesting that Mtg16 plays a role in the maintenance of stem cell quiescence.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Células Cultivadas , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteínas Repressoras , Fase S/genética
17.
Arterioscler Thromb Vasc Biol ; 31(10): 2216-22, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21737784

RESUMO

OBJECTIVE: Bone morphogenetic proteins (BMPs) are potently proangiogenic; however, the mechanisms underlying the regulation of vessel development by BMPs are not fully understood. To assess the significance of BMP endothelial cell precursor-derived regulator (BMPER) in blood vessel formation in vivo, we investigated its role in retinal angiogenesis. METHODS AND RESULTS: In a model of oxygen-induced retinopathy, Bmper mRNA expression and protein levels are downregulated, correlating with the initiation of Sma and Mad related protein phosphorylation in endothelial cells. Moreover, Bmper haploinsufficiency results in an increased rate of retinal revascularization, with retinas from Bmper+/- mice displaying increased numbers of branching points and angiogenic sprouts at the leading edge of the newly formed vasculature. Furthermore, although Bmper haploinsufficiency does not alter Bmp expression, it does lead to an increase in BMP signaling, as evidenced by increased phosphorylated Sma and Mad related protein levels in endothelial cells and increased expression of known BMP target genes. CONCLUSIONS: These observations provide compelling evidence that BMPER is important in the regulation of BMP signaling and revascularization in the hypoxic retina. These bring forth the possibility of novel therapeutic approaches for pathological angiogenesis based on manipulation of BMP signaling.


Assuntos
Proteínas de Transporte/metabolismo , Neovascularização Fisiológica , Oxigênio , Neovascularização Retiniana/metabolismo , Vasos Retinianos/metabolismo , Animais , Astrócitos/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/genética , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Camundongos , Camundongos Knockout , Neovascularização Fisiológica/genética , Pericitos/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Neovascularização Retiniana/genética , Neovascularização Retiniana/fisiopatologia , Vasos Retinianos/fisiopatologia , Transdução de Sinais , Proteínas Smad/metabolismo
18.
Int J Eat Disord ; 44(6): 540-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20957702

RESUMO

OBJECTIVE: To validate the Spanish version of the Children's Eating Attitudes Test (ChEAT). METHOD: The factor structure and other psychometric characteristics of the questionnaire were examined using the answers of 38,554 schoolchildren. Diagnostic efficiency was based on a standardized clinical interview of 968 schoolchildren who had previously completed the questionnaire. RESULTS: Five factors ("preoccupation with thinness," "dieting," "social pressure to eat," "purging," and "preoccupation with food and oral control") explained 46% of the variance. Cronbach's α was .858 for the total scale. The area under the receiver operating characteristic curve was .851. Sensitivity (SE) was 27% and specificity (SP) 96% for a cut-off of 20. A more appropriate cut-off was 15, where SE and SP were 62% and 90% respectively, and the positive and negative predictive values 27 and 98%. DISCUSSION: The ChEAT psychometric characteristics are adequate. The questionnaire is valid. A cut-off point of 15 is recommended for adolescents.


Assuntos
Atitude , Imagem Corporal , Ingestão de Alimentos/psicologia , Comportamento Alimentar/psicologia , Transtornos da Alimentação e da Ingestão de Alimentos/diagnóstico , Adolescente , Criança , Emoções , Transtornos da Alimentação e da Ingestão de Alimentos/psicologia , Feminino , Humanos , Masculino , Psicometria , Espanha , Inquéritos e Questionários
19.
Curr Opin Hematol ; 16(3): 195-201, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19346940

RESUMO

PURPOSE OF REVIEW: The role of bone morphogenetic proteins (BMPs) in vasculogenesis is still not well understood, despite many recent developments in this area of research. In this review, we discuss the most recent studies that identify new critical mechanisms through which BMP signaling acts with a focus on angiogenesis. RECENT FINDINGS: New evidence brought to light over the last few years suggests that BMP-binding proteins, formerly thought of as antagonists, can also increase BMP activity under certain conditions. It has also recently been determined that components of the extracellular matrix are involved in the BMP signaling pathways that regulate angiogenesis. Through the BMP pathway, myosin-X and cyclooxygenase 2 serve as target genes that have been determined to play a role in blood vessel formation. BMPs also conduct Smad-independent signaling and crosstalk with other pathways. Finally, BMPs have been shown to play an antiangiogenic role in specific settings. SUMMARY: Better understanding of the BMP signaling pathway and its regulators can have potentially great effects on therapeutic strategies from cardiovascular disease to cancer.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Neovascularização Fisiológica , Transdução de Sinais/fisiologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Células Endoteliais/fisiologia , Fatores de Crescimento Endotelial/fisiologia , Matriz Extracelular/metabolismo , Humanos , Miosinas/genética , Miosinas/metabolismo , Proteínas Smad/fisiologia
20.
Mol Cell Biol ; 28(20): 6234-47, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18710942

RESUMO

While a number of DNA binding transcription factors have been identified that control hematopoietic cell fate decisions, only a limited number of transcriptional corepressors (e.g., the retinoblastoma protein [pRB] and the nuclear hormone corepressor [N-CoR]) have been linked to these functions. Here, we show that the transcriptional corepressor Mtg16 (myeloid translocation gene on chromosome 16), which is targeted by t(16;21) in acute myeloid leukemia, is required for hematopoietic progenitor cell fate decisions and for early progenitor cell proliferation. Inactivation of Mtg16 skewed early myeloid progenitor cells toward the granulocytic/macrophage lineage while reducing the numbers of megakaryocyte-erythroid progenitor cells. In addition, inactivation of Mtg16 impaired the rapid expansion of short-term stem cells, multipotent progenitor cells, and megakaryocyte-erythroid progenitor cells that is required under hematopoietic stress/emergency. This impairment appears to be a failure to proliferate rather than an induction of cell death, as expression of c-Myc, but not Bcl2, complemented the Mtg16(-/-) defect.


Assuntos
Linhagem da Célula , Cromossomos de Mamíferos/genética , Deleção de Genes , Células-Tronco Hematopoéticas/citologia , Proteínas Nucleares/deficiência , Fatores de Transcrição/deficiência , Translocação Genética , Anemia/genética , Animais , Antígenos CD34/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Masculino , Megacariócitos/citologia , Camundongos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Fenil-Hidrazinas/farmacologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de IgG/metabolismo , Proteínas Repressoras , Fatores de Tempo , Fatores de Transcrição/metabolismo , Translocação Genética/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...