Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Genetics ; 212(3): 691-710, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31068340

RESUMO

Neurospora crassa is an established reference organism to investigate carotene biosynthesis and light regulation. However, there is little evidence of its capacity to produce secondary metabolites. Here, we report the role of the fungal-specific regulatory velvet complexes in development and secondary metabolism (SM) in N. crassa Three velvet proteins VE-1, VE-2, VOS-1, and a putative methyltransferase LAE-1 show light-independent nucleocytoplasmic localization. Two distinct velvet complexes, a heterotrimeric VE-1/VE-2/LAE-1 and a heterodimeric VE-2/VOS-1 are found in vivo The heterotrimer-complex, which positively regulates sexual development and represses asexual sporulation, suppresses siderophore coprogen production under iron starvation conditions. The VE-1/VE-2 heterodimer controls carotene production. VE-1 regulates the expression of >15% of the whole genome, comprising mainly regulatory and developmental features. We also studied intergenera functions of the velvet complex through complementation of Aspergillus nidulans veA, velB, laeA, vosA mutants with their N. crassa orthologs ve-1, ve-2, lae-1, and vos-1, respectively. Expression of VE-1 and VE-2 in A. nidulans successfully substitutes the developmental and SM functions of VeA and VelB by forming two functional chimeric velvet complexes in vivo, VelB/VE-1/LaeA and VE-2/VeA/LaeA, respectively. Reciprocally, expression of veA restores the phenotypes of the N. crassa ve-1 mutant. All N. crassa velvet proteins heterologously expressed in A. nidulans are localized to the nuclear fraction independent of light. These data highlight the conservation of the complex formation in N. crassa and A. nidulans However, they also underline the intergenera similarities and differences of velvet roles according to different life styles, niches and ontogenetic processes.


Assuntos
Carotenoides/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Neurospora crassa/genética , Esporos Fúngicos/genética , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Proteínas Fúngicas/genética , Luz , Metiltransferases/genética , Metiltransferases/metabolismo , Neurospora crassa/metabolismo , Neurospora crassa/fisiologia , Neurospora crassa/efeitos da radiação , Multimerização Proteica , Esporos Fúngicos/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Sci Rep ; 7: 44790, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28322269

RESUMO

Light is an environmental signal perceived by most eukaryotic organisms and that can have major impacts on their growth and development. The MadC protein in the fungus Phycomyces blakesleeanus (Mucoromycotina) has been postulated to form part of the photosensory input for phototropism of the fruiting body sporangiophores, but the madC gene has remained unidentified since the 1960s when madC mutants were first isolated. In this study the madC gene was identified by positional cloning. All madC mutant strains contain loss-of-function point mutations within a gene predicted to encode a GTPase activating protein (GAP) for Ras. The madC gene complements the Saccharomyces cerevisiae Ras-GAP ira1 mutant and the encoded MadC protein interacts with P. blakesleeanus Ras homologs in yeast two-hybrid assays, indicating that MadC is a regulator of Ras signaling. Deletion of the homolog in the filamentous ascomycete Neurospora crassa affects the circadian clock output, yielding a pattern of asexual conidiation similar to a ras-1 mutant that is used in circadian studies in N. crassa. Thus, MadC is unlikely to be a photosensor, yet is a fundamental link in the photoresponses from blue light perceived by the conserved White Collar complex with Ras signaling in two distantly-related filamentous fungal species.


Assuntos
Ritmo Circadiano/fisiologia , Fotobiologia , Fototropismo/fisiologia , Phycomyces/metabolismo , Phycomyces/fisiologia , Proteínas ras/metabolismo , Alelos , Sequência de Bases , Mapeamento Cromossômico , Ritmo Circadiano/efeitos da radiação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Genes Fúngicos , Teste de Complementação Genética , Luz , Mutação com Perda de Função/genética , Fenótipo , Fototropismo/efeitos da radiação , Phycomyces/genética , Phycomyces/efeitos da radiação , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais/efeitos da radiação , Transcrição Gênica/efeitos da radiação
3.
Curr Biol ; 26(12): 1577-1584, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27238284

RESUMO

Plants and fungi use light and other signals to regulate development, growth, and metabolism. The fruiting bodies of the fungus Phycomyces blakesleeanus are single cells that react to environmental cues, including light, but the mechanisms are largely unknown [1]. The related fungus Mucor circinelloides is an opportunistic human pathogen that changes its mode of growth upon receipt of signals from the environment to facilitate pathogenesis [2]. Understanding how these organisms respond to environmental cues should provide insights into the mechanisms of sensory perception and signal transduction by a single eukaryotic cell, and their role in pathogenesis. We sequenced the genomes of P. blakesleeanus and M. circinelloides and show that they have been shaped by an extensive genome duplication or, most likely, a whole-genome duplication (WGD), which is rarely observed in fungi [3-6]. We show that the genome duplication has expanded gene families, including those involved in signal transduction, and that duplicated genes have specialized, as evidenced by differences in their regulation by light. The transcriptional response to light varies with the developmental stage and is still observed in a photoreceptor mutant of P. blakesleeanus. A phototropic mutant of P. blakesleeanus with a heterozygous mutation in the photoreceptor gene madA demonstrates that photosensor dosage is important for the magnitude of signal transduction. We conclude that the genome duplication provided the means to improve signal transduction for enhanced perception of environmental signals. Our results will help to understand the role of genome dynamics in the evolution of sensory perception in eukaryotes.


Assuntos
Evolução Molecular , Duplicação Gênica , Genoma Fúngico , Mucor/genética , Phycomyces/genética , Transdução de Sinais/genética , Luz , Mucor/efeitos da radiação , Família Multigênica , Percepção , Phycomyces/efeitos da radiação , Transcrição Gênica/efeitos da radiação
4.
Proc Natl Acad Sci U S A ; 112(49): 15130-5, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26578805

RESUMO

DASH (Drosophila, Arabidopsis, Synechocystis, Human)-type cryptochromes (cry-DASH) belong to a family of flavoproteins acting as repair enzymes for UV-B-induced DNA lesions (photolyases) or as UV-A/blue light photoreceptors (cryptochromes). They are present in plants, bacteria, various vertebrates, and fungi and were originally considered as sensory photoreceptors because of their incapability to repair cyclobutane pyrimidine dimer (CPD) lesions in duplex DNA. However, cry-DASH can repair CPDs in single-stranded DNA, but their role in DNA repair in vivo remains to be clarified. The genome of the fungus Phycomyces blakesleeanus contains a single gene for a protein of the cryptochrome/photolyase family (CPF) encoding a cry-DASH, cryA, despite its ability to photoreactivate. Here, we show that cryA expression is induced by blue light in a Mad complex-dependent manner. Moreover, we demonstrate that CryA is capable of binding flavin (FAD) and methenyltetrahydrofolate (MTHF), fully complements the Escherichia coli photolyase mutant and repairs in vitro CPD lesions in single-stranded and double-stranded DNA with the same efficiency. These results support a role for Phycomyces cry-DASH as a photolyase and suggest a similar role for cry-DASH in mucoromycotina fungi.


Assuntos
Criptocromos/fisiologia , Reparo do DNA/fisiologia , Evolução Molecular , Phycomyces/metabolismo , Criptocromos/genética , Genes Fúngicos , Phycomyces/genética , Dímeros de Pirimidina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...