Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Cancer ; 23(1): 806, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644431

RESUMO

BACKGROUND: HeberFERON is a co-formulation of α2b and γ interferons, based on their synergism, which has shown its clinical superiority over individual interferons in basal cell carcinomas. In glioblastoma (GBM), HeberFERON has displayed promising preclinical and clinical results. This led us to design a microarray experiment aimed at identifying the molecular mechanisms involved in the distinctive effect of HeberFERON compared to the individual interferons in U-87MG model. METHODS: Transcriptional expression profiling including a control (untreated) and three groups receiving α2b-interferon, γ-interferon and HeberFERON was performed using an Illumina HT-12 microarray platform. Unsupervised methods for gene and sample grouping, identification of differentially expressed genes, functional enrichment and network analysis computational biology methods were applied to identify distinctive transcription patterns of HeberFERON. Validation of most representative genes was performed by qPCR. For the cell cycle analysis of cells treated with HeberFERON for 24 h, 48 and 72 h we used flow cytometry. RESULTS: The three treatments show different behavior based on the gene expression profiles. The enrichment analysis identified several mitotic cell cycle related events, in particular from prometaphase to anaphase, which are exclusively targeted by HeberFERON. The FOXM1 transcription factor network that is involved in several cell cycle phases and is highly expressed in GBMs, is significantly down regulated. Flow cytometry experiments corroborated the action of HeberFERON on the cell cycle in a dose and time dependent manner with a clear cellular arrest as of 24 h post-treatment. Despite the fact that p53 was not down-regulated, several genes involved in its regulatory activity were functionally enriched. Network analysis also revealed a strong relationship of p53 with genes targeted by HeberFERON. We propose a mechanistic model to explain this distinctive action, based on the simultaneous activation of PKR and ATF3, p53 phosphorylation changes, as well as its reduced MDM2 mediated ubiquitination and export from the nucleus to the cytoplasm. PLK1, AURKB, BIRC5 and CCNB1 genes, all regulated by FOXM1, also play central roles in this model. These and other interactions could explain a G2/M arrest and the effect of HeberFERON on the proliferation of U-87MG. CONCLUSIONS: We proposed molecular mechanisms underlying the distinctive behavior of HeberFERON compared to the treatments with the individual interferons in U-87MG model, where cell cycle related events were highly relevant.


Assuntos
Glioblastoma , Neoplasias Cutâneas , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Interferon-alfa/farmacologia , Anáfase , Interferon gama/farmacologia
2.
Mol Med ; 27(1): 161, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930105

RESUMO

BACKGROUND: Similarities in the hijacking mechanisms used by SARS-CoV-2 and several types of cancer, suggest the repurposing of cancer drugs to treat Covid-19. CK2 kinase antagonists have been proposed for cancer treatment. A recent study in cells infected with SARS-CoV-2 found a significant CK2 kinase activity, and the use of a CK2 inhibitor showed antiviral responses. CIGB-300, originally designed as an anticancer peptide, is an antagonist of CK2 kinase activity that binds to the CK2 phospho-acceptor sites. Recent preliminary results show the antiviral activity of CIGB-300 using a surrogate model of coronavirus. Here we present a computational biology study that provides evidence, at the molecular level, of how CIGB-300 may interfere with the SARS-CoV-2 life cycle within infected human cells. METHODS: Sequence analyses and data from phosphorylation studies were combined to predict infection-induced molecular mechanisms that can be interfered by CIGB-300. Next, we integrated data from multi-omics studies and data focusing on the antagonistic effect on the CK2 kinase activity of CIGB-300. A combination of network and functional enrichment analyses was used. RESULTS: Firstly, from the SARS-CoV studies, we inferred the potential incidence of CIGB-300 in SARS-CoV-2 interference on the immune response. Afterwards, from the analysis of multiple omics data, we proposed the action of CIGB-300 from the early stages of viral infections perturbing the virus hijacking of RNA splicing machinery. We also predicted the interference of CIGB-300 in virus-host interactions that are responsible for the high infectivity and the particular immune response to SARS-CoV-2 infection. Furthermore, we provided evidence of how CIGB-300 may participate in the attenuation of phenotypes related to muscle, bleeding, coagulation and respiratory disorders. CONCLUSIONS: Our computational analysis proposes putative molecular mechanisms that support the antiviral activity of CIGB-300.


Assuntos
COVID-19/metabolismo , Biologia Computacional/métodos , Animais , Células CACO-2 , Chlorocebus aethiops , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/uso terapêutico , Peptídeos Cíclicos/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Células Vero , Tratamento Farmacológico da COVID-19
3.
Mol Cell Biochem ; 404(1-2): 103-12, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25805179

RESUMO

B23/NPM is a multifunctional nucleolar protein frequently overexpressed, mutated, or rearranged in neoplastic tissues. B23/NPM is involved in diverse biological processes and is mainly regulated by heteroligomer association and posttranslational modification, phosphorylation being a major posttranslational event. While the role of B23/NPM in supporting and/or driving malignant transformation is widely recognized, the particular relevance of its CK2-mediated phosphorylation remains unsolved. Interestingly, the pharmacologic inhibition of such phosphorylation event by CIGB-300, a clinical-grade peptide drug, was previously associated to apoptosis induction in tumor cell lines. In this work, we sought to identify the biological processes modulated by CIGB-300 in a lung cancer cell line using subtractive suppression hybridization and subsequent functional annotation clustering. Our results indicate that CIGB-300 modulates a subset of genes involved in protein synthesis (ES = 8.4, p < 0.001), mitochondrial ATP metabolism (ES = 2.5, p < 0.001), and ribosomal biogenesis (ES = 1.5, p < 0.05). The impairment of these cellular processes by CIGB-300 was corroborated at the molecular and cellular levels by Western blot (P-S6/P-4EBP1, translation), confocal microscopy (JC-1, mitochondrial potential), qPCR (45SrRNA/p21, ribosome biogenesis), and electron microscopy (nucleolar structure, ribosome biogenesis). Altogether, our findings provide new insights on the potential relevance of the CK2-mediated phosphorylation of B23/NPM in cancer cells, revealing at the same time the potentialities of its pharmacological manipulation for cancer therapy. Finally, this work also suggests several candidate gene biomarkers to be evaluated during the clinical development of the anti-CK2 peptide CIGB-300.


Assuntos
Caseína Quinase II/genética , Neoplasias/genética , Proteínas Nucleares/metabolismo , Ribossomos/genética , Apoptose/efeitos dos fármacos , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metabolismo Energético/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Nucleares/genética , Nucleofosmina , Peptídeos Cíclicos/administração & dosagem , Fosforilação/efeitos dos fármacos , Ribossomos/metabolismo
4.
Curr Top Med Chem ; 14(3): 351-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24304312

RESUMO

Interferons (IFNs) are proteins of the family of cytokines. Their antiproliferative function has been taken into account for several clinical therapies against malignant diseases. In this family, IFNs α and γ have demonstrated the highest antitumor effects. HerberPAG® is a new co-formulation with IFNs, α2b and γ. It has been obtained to increase the antiproliferative effect of individual IFNs and decrease their associated toxicity. Glioblastoma multiforme (GBM) is the most common primary brain tumor and one of the most deadly forms of cancer. The objective of the present work is to obtain insights into the regulation of Interferon-STAT-pathways and apoptosis in U87MG, at the transcriptional level. As a pharmacogenomic strategy we quantified mRNAs levels in vitro by quantitative PCR, using the cell line U87MG as a model. Some of the genes involved in the first steps of IFNs signaling pathways (stat1 and stat3) and apoptosis events (tp53, bax, bcl-2, bad, caspase3 (casp3), caspase8 (casp8) and caspase9 (casp9)) were studied. The detected mRNAs expression pattern for stat1and stat3 indicates a higher tumor suppressor activity of HerberPAG® compared to individuals IFNs. The up-regulation of tp53, bax, bad, casp3, casp8 and casp9 genes and the down regulation of bcl-2 gen, after the treatment with HerberPAG® show a pro-apoptotic function. HerberPAG® gene-induced profile shows an advantage in relation to IFN α2b and γ with a higher stat1 expression and a downregulation of bcl-2 which increases bax:bcl-2 ratio. The regulation of genes involved in IFN-STAT-pathways and apoptosis may be the first evidences to explain the increased antiproliferative properties of this co-formulation.


Assuntos
Apoptose , Interferon-alfa/metabolismo , Interferon gama/metabolismo , Fatores de Transcrição STAT/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Interferon-alfa/genética , Interferon gama/genética , Fatores de Transcrição STAT/genética
5.
Mol Biol Rep ; 39(12): 11167-75, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23065266

RESUMO

Relative gene quantification by quantitative reverse transcription PCR (qRT-PCR) is an accurate technique only when a correct normalization strategy is carried out. Some of the most commonly genes used as reference have demonstrated variation after interferon (IFN) treatments. In this work we evaluated the suitability of seven reference genes (RGs) [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethylbilane synthase (HMBS), ß-2Microglobulin (B2M), ribosomal RNA subunits 18S and 28S, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (YWHAZ) and the RNA helicase (DDX5)] for use in qRT-PCR assays in the glioblastoma-derived cell line U87MG treated with IFNα, IFNγ or a co-formulated combination of both IFNs (HeberPAG); untreated cell lines were included as control. Data was analyzed using geNorm and NormFinder softwares. The expression stability of the seven RGs decreased in order of DDX5/GAPDH/HMBS, 18S rRNA, YWHAZ, 28S rRNA and B2M. qRT-PCR analyses demonstrated that DDX5, GAPDH and HMBS were among the best stably expressed markers under all conditions. Both, geNorm and NormFinder, analyses proposed same RGs as the least variables. Evaluation of the expression levels of two target genes utilizing different endogenous controls, using REST-MCS software, revealed that the normalization method applied might introduce errors in the estimation of relative quantities. We concluded that when qRT-PCR is designed for studies of gene expression in U87MG cell lines treated with IFNs type I and II or their combinations, the use of all three GAPDH, HMBS and DDX5 (or their combinations in pairs) as RGs for data normalizations is recommended.


Assuntos
Genes Neoplásicos/genética , Interferons/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Transcrição Reversa/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Estudos de Associação Genética , Humanos , Interferon-alfa/farmacologia , Interferon gama/farmacologia , Padrões de Referência , Transcrição Reversa/efeitos dos fármacos , Software
6.
J Bioinform Comput Biol ; 9(4): 541-57, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21776608

RESUMO

Experimental techniques for the identification of genes associated with diseases are expensive and have certain limitations. In this scenario, computational methods are useful tools to identify lists of promising genes for further experimental verification. This paper describes a flexible methodology for the in silico prediction of genes associated with diseases combining the use of available tools for gene enrichment analysis, gene network generation and gene prioritization. A set of reference genes, with a known association to a disease, is used as bait to extract candidate genes from molecular interaction networks and enriched pathways. In a second step, prioritization methods are applied to evaluate the similarities between previously selected candidates and the set of reference genes. The top genes obtained by these programs are grouped into a single list sorted by the number of methods that have selected each gene. As a proof of concept, top genes reported a few years ago in SzGene and AlzGene databases were used as references to predict genes associated to schizophrenia and Alzheimer's disease, respectively. In both cases, we were able to predict a statistically significant amount of genes belonging to the updated lists.


Assuntos
Doença de Alzheimer/genética , Estudos de Associação Genética/estatística & dados numéricos , Esquizofrenia/genética , Biologia Computacional , Bases de Dados Genéticas , Redes Reguladoras de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Design de Software
7.
BMC Bioinformatics ; 11: 91, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20163717

RESUMO

BACKGROUND: The increasing availability and diversity of omics data in the post-genomic era offers new perspectives in most areas of biomedical research. Graph-based biological networks models capture the topology of the functional relationships between molecular entities such as gene, protein and small compounds and provide a suitable framework for integrating and analyzing omics-data. The development of software tools capable of integrating data from different sources and to provide flexible methods to reconstruct, represent and analyze topological networks is an active field of research in bioinformatics. RESULTS: BisoGenet is a multi-tier application for visualization and analysis of biomolecular relationships. The system consists of three tiers. In the data tier, an in-house database stores genomics information, protein-protein interactions, protein-DNA interactions, gene ontology and metabolic pathways. In the middle tier, a global network is created at server startup, representing the whole data on bioentities and their relationships retrieved from the database. The client tier is a Cytoscape plugin, which manages user input, communication with the Web Service, visualization and analysis of the resulting network. CONCLUSION: BisoGenet is able to build and visualize biological networks in a fast and user-friendly manner. A feature of Bisogenet is the possibility to include coding relations to distinguish between genes and their products. This feature could be instrumental to achieve a finer grain representation of the bioentities and their relationships. The client application includes network analysis tools and interactive network expansion capabilities. In addition, an option is provided to allow other networks to be converted to BisoGenet. This feature facilitates the integration of our software with other tools available in the Cytoscape platform. BisoGenet is available at http://bio.cigb.edu.cu/bisogenet-cytoscape/.


Assuntos
Perfilação da Expressão Gênica/métodos , Modelos Biológicos , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Transdução de Sinais/fisiologia , Software , Interface Usuário-Computador , Algoritmos , Gráficos por Computador , Simulação por Computador , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais
8.
Biotecnol Apl ; 18(4): 211-215, oct.-dic.2001. tab, graf
Artigo em Espanhol | CUMED | ID: cum-24215

RESUMO

El establecimiento de las especificaciones de calidad es un paso importante en el desarrollo de un nuevo producto biofarmacéutico y constituyen un compromiso legal con las autoridades regulatorias en le campo de los medicamentos. En el trabajo se presenta la estrategia seguida en el centro de ingeniería genética y biotecnología de la Habana, Cuba para el establecimento de las especificaciones de calidad...(AU)


Assuntos
Controle de Qualidade , Estratégias de Saúde , Documentação , Gestão da Qualidade Total , Cuba
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...