Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33444076

RESUMO

Galvanizing industries generate large amounts of effluents rich in toxic and carcinogenic chromium(VI) species. Effective and sustainable treatments are required to comply with environmental regulations. This work focused on the development of innovative treatments for Cr(VI) by its removal from a galvanizing industry wastewater (pHinitial = 5.9) containing Cr (78 mg.L-1) and Zn (2178 mg.L-1) using the liquid surfactant membranes technique. The membrane phase carrier was Alamine® 336 in Escaid™ 110. For a synthetic solution (Cr(VI) = 353mg.L-1, pHinternal phase = 1.5), 99.9% of Cr(VI) was extracted in three stages ([KOH]internal phase = 0.27 mol.L-1). For the galvanizing wastewater, two selective extractions treatments were proposed: (1) 87% of Cr(VI) and 2% of Zn(II) were extracted in a single stage ([HCl]feed phase = 0.03 mol.L-1, [KOH]internal phase = 0.6 mol.L-1); (2) 95.6% of Cr(VI) and practically no zinc were extracted in a single stage ([HCl] feed phase = 10-6mol.L-1, [HCl] internal phase = 5mol.L-1). In another treatment condition ([HCl] feed phase = 2mol.L-1 and [KOH] internal phase = 1.2 mol.L-1), the simultaneous Cr(VI) and Zn(II) extractions (95% and 70%, respectively) were obtained in a single stage and more than 99% of both metals in three stages. This resulted in a depleted feed phase with 0.01 mg.L-1 of Cr(VI), that allows its discharge, according to the Brazilian legislation (≤0.1 mg/L).


Assuntos
Cromo/química , Tensoativos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Zinco/química , Brasil , Resíduos Industriais , Metalurgia
2.
Arch Biochem Biophys ; 400(1): 7-14, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11913965

RESUMO

Hydrolysis of D-valyl-L-leucyl-L-lysine 4-nitroanilide (1), D-valyl-L-leucyl-L-arginine 4-nitroanilide (2), and N alpha-p-tosyl-L-arginine methyl ester (3) by human tissue kallikrein was studied throughout a wide range of substrate concentrations. At low substrate concentrations, the hydrolysis followed Michaelis-Menten kinetics but, at higher substrate concentrations, a deviation from Michaelis-Menten behavior was observed. With the nitroanilides, a significant increase in hydrolysis rates was observed, while with the ester, a significant decrease in hydrolysis rates was observed. The results for substrates (1) and (3) can be accounted for by a model based on the hypothesis that a second substrate molecule binds to the ES complex to produce a more active or an inactive SES complex. The deviation observed for substrate (2) can be explained as a bimolecular reaction between the enzyme-substrate complex and a free substrate molecule.


Assuntos
Calicreínas/química , Calicreínas/metabolismo , Catálise , Compostos Cromogênicos/farmacologia , Humanos , Hidrólise , Cinética , Modelos Químicos , Oligopeptídeos/farmacologia , Ligação Proteica , Especificidade por Substrato , Tosilarginina Metil Éster/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...