Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(13): e2109431119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35333652

RESUMO

SignificanceCholesterol is one of the main components found in plasma membranes and is involved in lipid-dependent signaling enabled by integral membrane proteins such as inwardly rectifying potassium (Kir) channels. Similar to other ion channels, most of the Kir channels are down-regulated by cholesterol. One of the very few notable exceptions is Kir3.4, which is up-regulated by this important lipid. Here, we discovered and characterized a molecular switch that controls the impact (up-regulation vs. down-regulation) of cholesterol on Kir3.4. Our results provide a detailed molecular mechanism of tunable cholesterol regulation of a potassium channel.


Assuntos
Colesterol , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Membrana Celular/metabolismo , Colesterol/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Potássio/metabolismo , Transdução de Sinais
2.
Biophys J ; 121(23): 4585-4599, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36815709

RESUMO

A cationic leak current known as an "omega current" may arise from mutations of the first charged residue in the S4 of the voltage sensor domains of sodium and potassium voltage-gated channels. The voltage-sensing domains (VSDs) in these mutated channels act as pores allowing nonspecific passage of cations, such as Li+, K+, Cs+, and guanidinium. Interestingly, no omega currents have been previously detected in the nonswapped voltage-gated potassium channels such as the human-ether-a-go-go-related (hERG1), hyperpolarization-activated cyclic nucleotide-gated, and ether-a-go-go channels. In this work, we discovered a novel omega current by mutating the first charged residue of the S4 of the hERG1, K525 to serine. To characterize this omega current, we used various probes, including the hERG1 pore domain blocker, dofetilide, to show that the omega current does not require cation flux via the canonical pore domain. In addition, the omega flux does not cross the conventional selectivity filter. We also show that the mutated channel (K525S hERG1) conducts guanidinium. These data are indicative of the formation of an omega current channel within the VSD. Using molecular dynamics simulations with replica-exchange umbrella sampling simulations of the wild-type hERG1 and the K525S hERG1, we explored the molecular underpinnings governing the cation flow in the VSD of the mutant. We also show that the wild-type hERG1 may form water crevices supported by the biophysical surface accessibility data. Overall, our multidisciplinary study demonstrates that the VSD of hERG1 may act as a cation-selective channel wherein a mutation of the first charged residue in the S4 generates an omega current. Our simulation uncovers the atomistic underpinning of this mechanism.


Assuntos
Canal de Potássio ERG1 , Humanos , Cátions , Simulação de Dinâmica Molecular , Mutação , Canal de Potássio ERG1/química , Canal de Potássio ERG1/genética
3.
J Chem Inf Model ; 61(9): 4266-4279, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34420294

RESUMO

Psychostimulant drugs, such as cocaine, inhibit dopamine reuptake via blockading the dopamine transporter (DAT), which is the primary mechanism underpinning their abuse. Atypical DAT inhibitors are dissimilar to cocaine and can block cocaine- or methamphetamine-induced behaviors, supporting their development as part of a treatment regimen for psychostimulant use disorders. When developing these atypical DAT inhibitors as medications, it is necessary to avoid off-target binding that can produce unwanted side effects or toxicities. In particular, the blockade of a potassium channel, human ether-a-go-go (hERG), can lead to potentially lethal ventricular tachycardia. In this study, we established a counter screening platform for DAT and against hERG binding by combining machine learning-based quantitative structure-activity relationship (QSAR) modeling, experimental validation, and molecular modeling and simulations. Our results show that the available data are adequate to establish robust QSAR models, as validated by chemical synthesis and pharmacological evaluation of a validation set of DAT inhibitors. Furthermore, the QSAR models based on subsets of the data according to experimental approaches used have predictive power as well, which opens the door to target specific functional states of a protein. Complementarily, our molecular modeling and simulations identified the structural elements responsible for a pair of DAT inhibitors having opposite binding affinity trends at DAT and hERG, which can be leveraged for rational optimization of lead atypical DAT inhibitors with desired pharmacological properties.


Assuntos
Cocaína , Proteínas da Membrana Plasmática de Transporte de Dopamina , Éter , Humanos , Aprendizado de Máquina , Modelos Moleculares
4.
J Gen Physiol ; 153(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33939797

RESUMO

Polyunsaturated fatty acids (PUFAs), but not saturated fatty acids, modulate ion channels such as the cardiac KCNQ1 channel, although the mechanism is not completely understood. Using both simulations and experiments, we find that PUFAs interact directly with the KCNQ1 channel via two different binding sites: one at the voltage sensor and one at the pore. These two amphiphilic binding pockets stabilize the negatively charged PUFA head group by electrostatic interactions with R218, R221, and K316, while the hydrophobic PUFA tail is selectively stabilized by cassettes of hydrophobic residues. The rigid saturated tail of stearic acid prevents close contacts with KCNQ1. By contrast, the mobile tail of PUFA linoleic acid can be accommodated in the crevice of the hydrophobic cassette, a defining feature of PUFA selectivity in KCNQ1. In addition, we identify Y268 as a critical PUFA anchor point underlying fatty acid selectivity. Combined, this study provides molecular models of direct interactions between PUFAs and KCNQ1 and identifies selectivity mechanisms. Long term, this understanding may open new avenues for drug development based on PUFA mechanisms.


Assuntos
Canal de Potássio KCNQ1 , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Sítios de Ligação , Ácidos Graxos Insaturados , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Xenopus laevis/metabolismo
5.
Nat Commun ; 12(1): 1409, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658490

RESUMO

The lipid regulation of mammalian ion channel function has emerged as a fundamental mechanism in the control of electrical signalling and transport specificity in various cell types. In this work, we combine molecular dynamics simulations, mutagenesis, and electrophysiology to provide mechanistic insights into how lipophilic molecules (ceramide-sphingolipid probe) alter gating kinetics and K+ currents of hERG1. We show that the sphingolipid probe induced a significant left shift of activation voltage, faster deactivation rates, and current blockade comparable to traditional hERG1 blockers. Microseconds-long MD simulations followed by experimental mutagenesis elucidated ceramide specific binding locations at the interface between the pore and voltage sensing domains. This region constitutes a unique crevice present in mammalian channels with a non-swapped topology. The combined experimental and simulation data provide evidence for ceramide-induced allosteric modulation of the channel by a conformational selection mechanism.


Assuntos
Ceramidas/metabolismo , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Ceramidas/química , Ceramidas/farmacologia , Eletrofisiologia/métodos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida
6.
Proc Natl Acad Sci U S A ; 117(6): 2795-2804, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980532

RESUMO

The human ether-á-go-go-related gene (hERG1) channel conducts small outward K+ currents that are critical for cardiomyocyte membrane repolarization. The gain-of-function mutation N629D at the outer mouth of the selectivity filter (SF) disrupts inactivation and K+-selective transport in hERG1, leading to arrhythmogenic phenotypes associated with long-QT syndrome. Here, we combined computational electrophysiology with Markov state model analysis to investigate how SF-level gating modalities control selective cation transport in wild-type (WT) and mutant (N629D) hERG1 variants. Starting from the recently reported cryogenic electron microscopy (cryo-EM) open-state channel structure, multiple microseconds-long molecular-dynamics (MD) trajectories were generated using different cation configurations at the filter, voltages, electrolyte concentrations, and force-field parameters. Most of the K+ permeation events observed in hERG1-WT simulations occurred at microsecond timescales, influenced by the spontaneous dehydration/rehydration dynamics at the filter. The SF region displayed conductive, constricted, occluded, and dilated states, in qualitative agreement with the well-documented flickering conductance of hERG1. In line with mutagenesis studies, these gating modalities resulted from dynamic interaction networks involving residues from the SF, outer-mouth vestibule, P-helices, and S5-P segments. We found that N629D mutation significantly stabilizes the SF in a state that is permeable to both K+ and Na+, which is reminiscent of the SF in the nonselective bacterial NaK channel. Increasing the external K+ concentration induced "WT-like" SF dynamics in N629D, in qualitative agreement with the recovery of flickering currents in experiments. Overall, our findings provide an understanding of the molecular mechanisms controlling selective transport in K+ channels with a nonconventional SF sequence.


Assuntos
Canal de Potássio ERG1/química , Canal de Potássio ERG1/metabolismo , Motivos de Aminoácidos , Canal de Potássio ERG1/genética , Mutação com Ganho de Função , Humanos , Cinética , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Mutação de Sentido Incorreto , Potássio/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína
7.
J Phys Chem Lett ; 9(12): 3497-3502, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29886737

RESUMO

Membrane proteins known as ryanodine receptors (RyRs) display large conductance of ∼1 nS and nearly ideal charge selectivity. Both properties are inversely correlated in other large-conductance but nonselective biological nanopores (i.e., α-hemolysin) used as industrial biosensors. Although recent cryo-electron microscopy structures of RyR2 show similarities to K+- and Na+-selective channels, it remains unclear whether similar ion conduction mechanisms occur in RyR2. Here, we combine microseconds of all-atom molecular dynamics (MD) simulations with mutagenesis and electrophysiology experiments to investigate large K+ conductance and charge selectivity (cation vs anion) in an open-state structure of RyR2. Our results show that a water-mediated knock-on mechanism enhances the cation permeation. The polar Q4863 ring may function as a confinement zone amplifying charge selectivity, while the cytoplasmic vestibule can contribute to the efficiency of the cation attraction. We also provide direct evidence that the rings of acidic residues at the channel vestibules are critical for both conductance and charge discrimination in RyRs.

8.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt B): 1643-1653, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28847523

RESUMO

The rapid development of experimental and computational techniques has changed fundamentally our understanding of cellular-membrane transport. The advent of powerful computers and refined force-fields for proteins, ions, and lipids has expanded the applicability of Molecular Dynamics (MD) simulations. A myriad of cellular responses is modulated through the binding of endogenous and exogenous ligands (e.g. neurotransmitters and drugs, respectively) to ion channels. Deciphering the thermodynamics and kinetics of the ligand binding processes to these membrane proteins is at the heart of modern drug development. The ever-increasing computational power has already provided insightful data on the thermodynamics and kinetics of drug-target interactions, free energies of solvation, and partitioning into lipid bilayers for drugs. This review aims to provide a brief summary about modeling approaches to map out crucial binding pathways with intermediate conformations and free-energy surfaces for drug-ion channel binding mechanisms that are responsible for multiple effects on cellular functions. We will discuss post-processing analysis of simulation-generated data, which are then transformed to kinetic models to better understand the molecular underpinning of the experimental observables under the influence of drugs or mutations in ion channels. This review highlights crucial mathematical frameworks and perspectives on bridging different well-established computational techniques to connect the dynamics and timescales from all-atom MD and free energy simulations of ion channels to the physiology of action potentials in cellular models. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.


Assuntos
Canais Iônicos/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Neurotransmissores/química , Termodinâmica , Animais , Humanos
9.
Biophys J ; 112(8): 1645-1653, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445755

RESUMO

Ryanodine (Ryd) irreversibly targets ryanodine receptors (RyRs), a family of intracellular calcium release channels essential for many cellular processes ranging from muscle contraction to learning and memory. Little is known of the atomistic details about how Ryd binds to RyRs. In this study, we used all-atom molecular dynamics simulations with both enhanced and bidirectional sampling to gain direct insights into how Ryd interacts with major residues in RyRs that were experimentally determined to be critical for its binding. We found that the pyrrolic ring of Ryd displays preference for the R4892AGGG-F4921 residues in the cavity of RyR1, which explain the effects of the corresponding mutations in RyR2 in experiments. Particularly, the mutant Q4933A (or Q4863A in RyR2) critical for both the gating and Ryd binding not only has significantly less interaction with Ryd than the wild-type, but also yields more space for Ryd and water molecules in the cavity. These results describe clear binding modes of Ryd in the RyR cavity and offer structural mechanisms explaining functional data collected on RyR blockade.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Rianodina/metabolismo , Animais , Sítios de Ligação , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Estrutura Secundária de Proteína , Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Termodinâmica , Água/química
10.
J Phys Chem B ; 120(32): 7824-35, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27448039

RESUMO

One of the essential challenges in the description of receptor-drug interactions in the presence of various polyvalent cations (such as zinc, magnesium, or iron) is the accurate assessment of the electronic effects due to cofactor binding. The effects can range from partial electronic polarization of the proximal atoms in a receptor and bound substrate to long-range effects related to partial charge transfer and electronic delocalization effects between the cofactor and the drug. Here, we examine the role of the explicit account for electronic effects for a panel of small-molecule inhibitors binding to the zinc-aminopeptidase PfA-M1, an essential target for antimalarial drug development. Our study on PfA-M1:inhibitor interactions at the QM level reveals that the partial charge and proton transfer due to bound zinc ion are important mechanisms in the inhibitors' recognition and catalysis. The combination of classical MD simulations with a posteriori QM/MM corrections with novel DFTB parameters for the zinc cation and the linear-interaction energy (LIE) approach offers by far the most accurate estimates for the PfA-M1:inhibitor binding affinities, opening the door for future inhibitor design.


Assuntos
Aminopeptidases/antagonistas & inibidores , Aminopeptidases/metabolismo , Metaloproteínas/antagonistas & inibidores , Metaloproteínas/metabolismo , Modelos Moleculares , Zinco/metabolismo , Antimaláricos/química , Antimaláricos/farmacologia , Catálise , Domínio Catalítico , Simulação por Computador , Desenho de Fármacos , Eletricidade , Modelos Lineares , Prótons , Teoria Quântica , Estereoisomerismo , Especificidade por Substrato
11.
J Chem Inf Model ; 55(9): 1867-77, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26180998

RESUMO

In this work, we introduced an improved linear interaction energy (LIE) method parameterization for computations of protein­ligand binding free energies. The protocol, coined LIE-D, builds on the linear relationship between the empirical coefficient γ in the standard LIE scheme and the D parameter, introduced in our work. The D-parameter encompasses the balance (difference) between electrostatic (polar) and van der Waals (nonpolar) energies in protein­ligand complexes. Leave-one-out cross-validation showed that LIE-D reproduced accurately the absolute binding free energies for our training set of protein­ligand complexes (<|error|> = 0.92 kcal/mol, SDerror = 0.66 kcal/mol, R(2) = 0.90, QLOO(2) = 0.89, and sPRESS(LOO) = 1.28 kcal/mol). We also demonstrated LIE-D robustness by predicting accurately the binding free energies for three different protein­ligand systems outside the training data set, where the electrostatic and van der Waals interaction energies were calculated with different force fields.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Termodinâmica , Complexos de Coordenação/química , Ligantes , Ligação Proteica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...