Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 107(12): 2680-2693, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31390153

RESUMO

We show the influence of two functional ions (Cu2+ and La3+ ), incorporated into a quaternary (Si, Ca, Na, P) sol-gel derived bioactive glass system, on its particle size, cytotoxicity, and bioactivity. By doping the parent glass with the two ions in singular or combined forms, 15 doped glasses were prepared by a rapid sol-gel technique. The influence of the combined doping on the particle size and cell viability was successfully evaluated by the aid of signal-to-noise-ratio (S/N), using Taguchi analysis. This allowed us to analyze the complex interplay of effects between these ions, and the marked differences in biocompatibility between the three cell types studied. Cu addition had a significant effect on reducing the glass particle size, while both increased density. Cell viability was significantly improved for some doping combinations, demonstrating that while combined Cu-La doping was beneficial for biocompatibility with lymphoblasts, individual high-Cu or low-La doping was better with fibroblasts, and either high-Cu or low-La doping, or certain combined Cu-La combinations, were the optimum for osteoblasts. However, the bioactivity of doped samples was generally similar to that of the parent glass, although both La, and particularly Cu, did appear to aid dissolution of ions when immersed in SBF, act as glass modifiers, and encourage HAp crystallization. The results reveal that potential synergistic benefits can be obtained by combining the effects on the mean particle size, density, cytotoxicity, and bioactivity of the glasses. The greatly improved biocompatibility of some of the doped glasses makes them promising candidates for biomedical applications.


Assuntos
Materiais Biocompatíveis/toxicidade , Cerâmica/toxicidade , Cobre/toxicidade , Lantânio/toxicidade , Dióxido de Silício/toxicidade , Materiais Biocompatíveis/química , Cátions/química , Cátions/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cerâmica/química , Cobre/química , Humanos , Lantânio/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Transição de Fase , Dióxido de Silício/química
2.
Acta Biomater ; 87: 265-272, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30690209

RESUMO

This research details the successful fabrication of scaffolds by robocasting from high silica sol-gel glass doped with Cu2+ or La3+. The parent HSSGG composition within the system SiO2-CaO-Na2O-P2O5 [67% Si - 24% Ca - 5% Na - 4% P (mol%)] was doped with 5 wt% Cu2+ or La3+ (Cu5 and La5). The paper sheds light on the importance of copper and lanthanum in improving the mechanical properties of the 3-D printed scaffolds. 1 h wet milling was sufficient to obtain a bioglass powder ready to be used in the preparation of a 40 vol% solid loading paste suitable for printing. Moreover, Cu addition showed a small reduction in the mean particle size, while La exhibited a greater reduction, compared with the parent glass. Scaffolds with macroporosity between 300 and 500 µm were successfully printed by robocasting, and then sintered at 800 °C. A small improvement in the compressive strength (7-18%) over the parent glass accompanied the addition of La. However, a much greater improvement in the compressive strength was observed with Cu addition, up to 221% greater than the parent glass, with compressive strength values of up to ∼14 MPa. This enhancement in compressive strength, around the upper limit registered for human cancellous bones, supports the potential use of this material in biomedical applications. STATEMENT OF SIGNIFICANCE: 3D porous bioactive glass scaffolds with greatly improved compressive strength were fabricated by robocasting from a high silica sol-gel glasses doped with Cu2+ or La3+. In comparison to the parent glass, the mechanical performance of scaffolds was greatly improved by copper-doping (>220%), while a modest increase of ∼9% was registered for lanthanum-doping. Doping ions (particularly La3+) acted as glass modifiers leading to less extents of silica polymerisation. This favoured the milling of the glass powders and the obtaining of smaller mean particle sizes. Pastes with a high solid loading (40 vol%) and with suitable rheological properties for robocasting were prepared from all glass powders. Scaffolds with dimensions of 3 × 3 × 4 mm and macro-pore sizes between 300 and 500 µm were fabricated.


Assuntos
Cobre/química , Vidro/química , Lantânio/química , Alicerces Teciduais/química , Porosidade
3.
J Biomed Mater Res A ; 106(2): 510-520, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28921832

RESUMO

Sol-gel glasses in quaternary silica-sodium-calcium-phosphorous systems have been synthesized using a rotary evaporator for rapid drying without ageing. This novel fast drying method drastically decreases the total drying and ageing time from several weeks to only 1 hour, thus overcoming a serious drawback in sol-gel preparation procedures for bioglasses. This work investigates the bioactivity behavior of two glasses synthesized by this fast method, with Ca:P ratios of 1.5, and 1.67. X-ray diffraction (XRD), Inductive coupled plasma, Fourier-transform infrared, and Raman spectroscopy were used to confirm the bioactivity of the synthesized powders. MAS-NMR was also used to assess the degree of silica polymerization. The composition with a higher Ca:P = 1.67 ratio showed better bioactivity in comparison to the one with Ca:P = 1.5, which exhibited little bio-response with up to 4 weeks of immersion in SBF (simulated body fluid). It was also found that an orbital agitation rate of 120 rpm favors the interfacial bio-mineralization reactions, promoting the formation of a crystalline hydroxyapatite (HAp) layer at the surface of the (Ca:P = 1.67) composition after 2 weeks immersion in SBF. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 510-520, 2018.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Cálcio/análise , Vidro/química , Transição de Fase , Fósforo/análise , Dióxido de Silício/química , Concentração de Íons de Hidrogênio , Pós , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Temperatura , Difração de Raios X
4.
Mater Sci Eng C Mater Biol Appl ; 48: 354-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579933

RESUMO

PDMS-SiO2 hybrid materials obtained by sol-gel process have been extensively studied over the past years due to its promising biomedical applications namely as bone substitutes, catheters, and drug delivery devices. Regardless of the intended biomedical application, all these materials should go through a sterilization process before interfacing with a living structure. However, it is unclear whether they undergo structural and microstructural changes when subjected to sterilization by gamma irradiation. This paper addresses this issue by showing that a sol-gel processed biomaterial based on the PDMS-CaO-SiO2 hybrid system suffers only small structural changes when submitted to a radiation dose of 25kGy, the dose usually recommended to achieve a Sterility Assurance Level of 10(-6) when the natural contamination level and microorganism types cannot be calculated. The characterization was assessed by FT-IR, (29)Si-{(1)H} CP-MAS, thermal analysis (DTG), and SEM.


Assuntos
Dimetilpolisiloxanos/química , Raios gama , Dióxido de Silício/química , Esterilização
5.
Nanotechnology ; 25(36): 365701, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25141030

RESUMO

Metallic implants and devices are widely used in the orthopedic and orthodontic clinical areas. However, several problems regarding their adhesion with the living tissues and inflammatory responses due to the release of metallic ions to the medium have been reported. The modification of the metallic surfaces and the use of biocompatible protective coatings are two approaches to solve such issues. In this study, in order to improve the adhesion properties and to increase the corrosion resistance of metallic Ti substrates we have obtained a hybrid structure based on TiO2 nanotubular arrays and PDMS-TEOS films. TiO2 nanotubes have been prepared with two different diameters by means of electrochemical anodization. PDMS-TEOS films have been prepared by the sol-gel method. The morphological and the elemental analysis of the structures have been investigated by scanning electron microscopy and energy dispersive spectroscopy (EDS). Electrochemical impedance spectroscopy (EIS) and polarization curves have been performed during immersion of the samples in Kokubo's simulated body fluid (SBF) at 37 °C to study the effect of structure layers and tube diameter on the protective properties. The obtained results show that the modification of the surface structure of TiO2 and the application of PDMS-TEOS film is a promising strategy for the development of implant materials.


Assuntos
Materiais Revestidos Biocompatíveis/síntese química , Dimetilpolisiloxanos/química , Nanotubos/química , Nylons/química , Silanos/química , Titânio/química , Eletroquímica , Humanos , Teste de Materiais , Nanotubos/ultraestrutura
6.
J Nanosci Nanotechnol ; 10(4): 2444-50, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20355446

RESUMO

The crystallization behaviour of hybrid SiO2-TiO2 nanocomposites derived from titanosiloxanes by sol-gel method has been investigated depending on the type of siloxane precursor and the pirolysis temperature. The resulting hybrid titanosiloxanes, crosslinked with trimethylsilil isocyanate (nitrogen-modified) or methyltrietoxisilane (carbon-modified), were pirolyzed in an inert atmosphere in the temperature range between 600 to 1100 degrees C in order to form C-(N)-Si-O-TiO2 nanocomposites. By means of XRD, FTIR, 29Si NMR, SEM, TEM and AFM investigations have been established that the transformation of the nanostructured SiO2-TiO2 hybrid materials into nanocomposites as well as the crystalline size depend on the titanium content and the type of cross-linking agents used in the synthesizes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...