Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 362: 606-619, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37678437

RESUMO

Articular cartilage injuries are very frequent lesions that if left untreated may degenerate into osteoarthritis. Gene transfer to mesenchymal stem cells (MSCs) provides a powerful approach to treat these lesions by promoting their chondrogenic differentiation into the appropriate cartilage phenotype. Non-viral vectors constitute the safest gene transfer tools, as they avoid important concerns of viral systems including immunogenicity and insertional mutagenesis. However, non-viral gene transfer usually led to lower transfection efficiencies when compared with their viral counterparts. Biomaterial-guided gene delivery has emerged as a promising alternative to increase non-viral gene transfer efficiency by achieving sustained delivery of the candidate gene into cellular microenvironment. In the present study, we designed hyaluronic acid-based gene-activated cryogels (HACGs) encapsulating a novel formulation of non-viral vectors based on niosomes (P80PX) to promote MSCs in situ transfection. The developed HACG P80PX systems showed suitable physicochemical properties to promote MSCs in situ transfection with very low cytotoxicity. Incorporation of a plasmid encoding for the transcription factor SOX9 (psox9) into HACG P80PX systems led to an effective MSCs chondrogenic differentiation with reduced expression of fibrocartilage and hypertrophic markers. The capacity of the developed systems to restore cartilage extracellular matrix was further confirmed in an ex vivo model of chondral defect.

2.
J Biol Eng ; 17(1): 49, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491322

RESUMO

In recent decades, human mesenchymal stem cells (hMSCs) have gained momentum in the field of cell therapy for treating cartilage and bone injuries. Despite the tri-lineage multipotency, proliferative properties, and potent immunomodulatory effects of hMSCs, their clinical potential is hindered by donor variations, limiting their use in medical settings. To address this challenge, gene delivery technologies have emerged as a promising approach to modulate the phenotype and commitment of hMSCs towards specific cell lineages, thereby enhancing osteochondral repair strategies. This review provides a comprehensive overview of current non-viral gene delivery approaches used to engineer MSCs, highlighting key factors such as the choice of nucleic acid or delivery vector, transfection strategies, and experimental parameters. Additionally, it outlines various protocols and methods for qualitative and quantitative evaluation of their therapeutic potential as a delivery system in osteochondral regenerative applications. In summary, this technical review offers a practical guide for optimizing non-viral systems in osteochondral regenerative approaches. hMSCs constitute a key target population for gene therapy techniques. Nevertheless, there is a long way to go for their translation into clinical treatments. In this review, we remind the most relevant transfection conditions to be optimized, such as the type of nucleic acid or delivery vector, the transfection strategy, and the experimental parameters to accurately evaluate a delivery system. This survey provides a practical guide to optimizing non-viral systems for osteochondral regenerative approaches.

3.
Mol Ther Nucleic Acids ; 32: 302-317, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37096164

RESUMO

Senescence is a process characterized by a prolonged irreversible cell-cycle arrest. The accumulation of senescent cells in tissues is related to aging and to the development of age-related diseases. Recently, gene therapy has emerged as a powerful tool for treating age-associated diseases by the transference of specific genes into the target cell population. However, the high sensitivity of senescent cells significantly precludes their genetic modification via classical viral and non-viral systems. Niosomes are self-assembled non-viral nanocarriers that exhibit important advantages due to their elevated cytocompatibility, versatility, and cost-efficiency, arising as a new alternative for genetic modification of senescent cells. In this work, we explore for the first time the use of niosomes for genetic modification of senescent umbilical cord-derived mesenchymal stem cells. We report that niosome composition greatly affected transfection efficiency; those formulations prepared in medium with sucrose and containing cholesterol as helper lipid being the most suitable to transfect senescent cells. Moreover, resulting niosome formulations exhibited a superior transfection efficiency with a markedly less cytotoxicity than the commercial reagent Lipofectamine. These findings highlight the potentiality of niosomes as effective vectors for genetic modification of senescent cells, providing new tools for the prevention and/or treatment of age-related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...