Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(31): e202304375, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563634

RESUMO

The clinical translation of polysarcosine (pSar) as polyethylene glycol (PEG) replacement in the development of novel nanomedicines creates a broad demand of polymeric material in high-quality making high-purity sarcosine N-carboxyanhydride (Sar-NCA) as monomer for its production inevitable. Within this report, we present the use of triethyloxonium tetrafluoroborate in Sar-NCA synthesis with focus on amino acid and chloride impurities to avoid the sublimation of Sar-NCAs. With a view towards upscaling into kilogram or ton scale, a new methodology of monomer purification is introduced by utilizing the Meerwein's Salt triethyloxonium tetrafluoroborate to remove chloride impurities by covalent binding and converting chloride ions into volatile products within a single step. The novel straightforward technique enables access to monomers with significantly reduced chloride content (<100 ppm) compared to Sar-NCA derived by synthesis or sublimation. The derived monomers enable the controlled-living polymerization in DMF and provide access to pSar polymers with Poisson-like molecular weight distribution within a high range of chain lengths (Xn 25-200). In conclusion, the reported method can be easily applied to Sar-NCA synthesis or purification of commercially available pSar-NCAs and eases access to well-defined hetero-telechelic pSar polymers.


Assuntos
Cloretos , Polimerização , Sarcosina , Sarcosina/química , Sarcosina/análogos & derivados , Cloretos/química , Polietilenoglicóis/química , Polímeros/química , Boratos/química , Anidridos/química , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...