Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 4495-4498, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28269276

RESUMO

To understand the complex correlations between neural networks across different regions in the brain and their functions at high spatiotemporal resolution, a tool is needed for obtaining long-term single unit activity (SUA) across the entire brain area. The concept and preliminary design of a distributed free-floating wireless implantable neural recording (FF-WINeR) system are presented, which can enabling SUA acquisition by dispersedly implanting tens to hundreds of untethered 1 mm3 neural recording probes, floating with the brain and operating wirelessly across the cortical surface. For powering FF-WINeR probes, a 3-coil link with an intermediate high-Q resonator provides a minimum S21 of -22.22 dB (in the body medium) and -21.23 dB (in air) at 2.8 cm coil separation, which translates to 0.76%/759 µW and 0.6%/604 µW of power transfer efficiency (PTE) / power delivered to a 9 kΩ load (PDL), in body and air, respectively. A mock-up FF-WINeR is implemented to explore microassembly method of the 1×1 mm2 micromachined silicon die with a bonding wire-wound coil and a tungsten micro-wire electrode. Circuit design methods to fit the active circuitry in only 0.96 mm2 of die area in a 130 nm standard CMOS process, and satisfy the strict power and performance requirements (in simulations) are discussed.


Assuntos
Desenho de Equipamento , Monitorização Neurofisiológica/instrumentação , Próteses e Implantes , Tecnologia sem Fio , Córtex Cerebral/fisiologia , Eletrodos Implantados , Humanos
2.
Artigo em Inglês | MEDLINE | ID: mdl-24111022

RESUMO

This paper presents a miniature Optogenetics headstage for wirelessly stimulating the brain of rodents with an implanted LED while recording electrophysiological data from a two-channel custom readout. The headstage is powered wirelessly using an inductive link, and is built using inexpensive commercial off-the-shelf electronic components, including a RF microcontroller and a printed antenna. This device has the capability to drive one light-stimulating LED and, at the same time, capture and send back neural signals recorded from two microelectrode readout channels. Light stimulation uses flexible patterns that allow for easy tuning of light intensity and stimulation periods. For driving the LED, a low-pass filtered digitally-generated PWM signal is employed for providing a flexible pulse generation method that alleviates the need for D/A converters. The proposed device can be powered wirelessly into an animal chamber using inductive energy transfer, which enables compact, light-weight and cost-effective smart animal research systems. The device dimensions are 15×25×17 mm; it weighs 7.4 grams and has a data transmission range of more than 2 meters. Different types of LEDs with different power consumptions can be used for this system. The power consumption of the system without the LED is 94.52 mW.


Assuntos
Eletrodos Implantados , Eletrofisiologia/instrumentação , Optogenética/instrumentação , Tecnologia sem Fio/instrumentação , Animais , Encéfalo/fisiologia , Desenho de Equipamento , Modelos Teóricos , Roedores , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...