Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(3): 836-851, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36479982

RESUMO

The liver is one of the vital organs in the body, and the gold standard of treatment for liver function impairment is liver transplantation, which poses many challenges. The specific three-dimensional (3D) structure of liver, which significantly impacts the growth and function of its cells, has made biofabrication with the 3D printing of scaffolds suitable for this approach. In this study, to investigate the effect of scaffold geometry on the performance of HepG2 cells, poly-lactic acid (PLA) polymer was used as the input of the fused deposition modeling (FDM) 3D-printing machine. Samples with simple square and bioinspired hexagonal cross-sectional designs were printed. One percent and 2% of gelatin coating were applied to the 3D printed PLA to improve the wettability and surface properties of the scaffold. Scanning electron microscopy pictures were used to analyze the structural properties of PLA-Gel hybrid scaffolds, energy dispersive spectroscopy to investigate the presence of gelatin, water contact angle measurement for wettability, and weight loss for degradation. In vitro tests were performed by culturing HepG2 cells on the scaffold to evaluate the cell adhesion, viability, cytotoxicity, and specific liver functions. Then, high-precision scaffolds were printed and the presence of gelatin was detected. Also, the effect of geometry on cell function was confirmed in viability, adhesion, and functional tests. The albumin and urea production of the Hexagonal PLA scaffold was about 1.22 ± 0.02-fold higher than the square design in 3 days. This study will hopefully advance our understanding of liver tissue engineering toward a promising perspective for liver regeneration.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Gelatina , Estudos Transversais , Poliésteres/química , Fígado , Impressão Tridimensional
2.
J Tissue Eng Regen Med ; 14(12): 1715-1737, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33043611

RESUMO

The liver is in charge of more than 500 functions in the human body, which any damage and failure to the liver can significantly compromise human life. Numerous studies are being carried out in regenerative medicine, as a potential driving force, toward alleviating the need for liver donors and fabrication of a 3D-engineered transplantable hepatic tissue. Liver tissue engineering brings three main factors of cells, extracellular matrix (ECM), and signaling molecules together, while each of these three factors tries to mimic the physiological state of the tissue to direct tissue regeneration. Signaling molecules play a crucial role in directing tissue fabrication in liver tissue engineering. When mimicking the natural in vivo process of regeneration, it is tightly associated with three main phases of differentiation, proliferation (progression), and tissue maturation through vascularization while directing each of these phases is highly regulated by the specific signaling molecules. The understanding of how these signaling molecules guide the dynamic behavior of regeneration would be a tool for further tailoring of bioengineered systems to help the liver regeneration with many cellular, molecular, and tissue-level functions. Hence, the signaling molecules come to aid all these phases for further improvements toward the clinical use of liver tissue engineering as the goal.


Assuntos
Regeneração Hepática/fisiologia , Medicina Regenerativa , Transdução de Sinais , Animais , Hepatócitos/citologia , Humanos , Neovascularização Fisiológica
3.
Tissue Eng Part B Rev ; 26(2): 145-163, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797731

RESUMO

Chronic liver diseases affect thousands of lives throughout the world every year. The shortage of liver donors for transplantation has been the main driving force to employ alternative methods such as liver tissue engineering (LTE) in fabricating a three-dimensional transplantable liver tissue or enhancing cell delivery techniques alleviating the need for liver donors. LTE consists of three components, cells, ECM (extracellular matrix), and signaling molecules, which we discuss the first and second. The three most common cell sources used in LTE are human and animal primary hepatocytes, and stem cells for different applications. Two major categories of ECM are used to mimic the microenvironment of these cells, named scaffolds and microbeads. Scaffolds have been made by numerous methods with a wide range of synthetic and natural biomaterials. Cell encapsulation has also been utilized by many polymeric biomaterials. To investigate their functions, many properties have been discussed in the literature, such as biochemical, geometrical, and mechanical properties, in both of these categories. Overall, LTE shows excellent potential in assisting hepatic disorders. However, some challenges exist that prevent the practical use of it clinically, making LTE an ongoing research subject in the scientific society.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Hepatopatias/terapia , Fígado/citologia , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...