Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38786098

RESUMO

Breast cancer develops upon sequential acquisition of driver mutations in mammary epithelial cells; however, how these mutations collaborate to transform normal cells remains unclear in most cases. We aimed to reconstitute this process in a particular case. To this end, we combined the activated form of the PI 3-kinase harboring the H1047R mutation with the inactivation of the histone lysine methyl-transferase KMT2D in the non-tumorigenic human mammary epithelial cell line MCF10A. We found that PI 3-kinase activation promoted cell-cycle progression, especially when growth signals were limiting, as well as cell migration, both in a collective monolayer and as single cells. Furthermore, we showed that KMT2D inactivation had relatively little influence on these processes, except for single-cell migration, which KMT2D inactivation promoted in synergy with PI 3-kinase activation. The combination of these two genetic alterations induced expression of the ARPC5L gene that encodes a subunit of the Arp2/3 complex. ARPC5L depletion fully abolished the enhanced migration persistence exhibited by double-mutant cells. Our reconstitution approach in MCF10A has thus revealed both the cell function and the single-cell migration, and the underlying Arp2/3-dependent mechanism, which are synergistically regulated when KMT2D inactivation is combined with the activation of the PI 3-kinase.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Movimento Celular , Células Epiteliais , Histona-Lisina N-Metiltransferase , Fosfatidilinositol 3-Quinases , Humanos , Movimento Celular/genética , Células Epiteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Feminino , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/citologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Mutação/genética , Linhagem Celular
2.
Emerg Top Life Sci ; 7(4): 423-437, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38087891

RESUMO

Neurulation is a critical step in early embryonic development, giving rise to the neural tube, the primordium of the central nervous system in amniotes. Understanding this complex, multi-scale, multi-tissue morphogenetic process is essential to provide insights into normal development and the etiology of neural tube defects. Innovations in tissue engineering have fostered the generation of pluripotent stem cell-based in vitro models, including organoids, that are emerging as unique tools for delving into neurulation mechanisms, especially in the context of human development. Each model captures specific aspects of neural tube morphogenesis, from epithelialization to neural tissue elongation, folding and cavitation. In particular, the recent models of human and mouse trunk morphogenesis, such as gastruloids, that form a spinal neural plate-like or neural tube-like structure are opening new avenues to study normal and pathological neurulation. Here, we review the morphogenetic events generating the neural tube in the mammalian embryo and questions that remain unanswered. We discuss the advantages and limitations of existing in vitro models of neurulation and possible future technical developments.


Assuntos
Defeitos do Tubo Neural , Neurulação , Camundongos , Animais , Humanos , Neurulação/fisiologia , Tubo Neural , Placa Neural , Células-Tronco , Mamíferos
3.
Nat Biotechnol ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709912

RESUMO

Integrated in vitro models of human organogenesis are needed to elucidate the multi-systemic events underlying development and disease. Here we report the generation of human trunk-like structures that model the co-morphogenesis, patterning and differentiation of the human spine and spinal cord. We identified differentiation conditions for human pluripotent stem cells favoring the formation of an embryo-like extending antero-posterior (AP) axis. Single-cell and spatial transcriptomics show that somitic and spinal cord differentiation trajectories organize along this axis and can self-assemble into a neural tube surrounded by somites upon extracellular matrix addition. Morphogenesis is coupled with AP patterning mechanisms, which results, at later stages of organogenesis, in in vivo-like arrays of neural subtypes along a neural tube surrounded by spine and muscle progenitors contacted by neuronal projections. This integrated system of trunk development indicates that in vivo-like multi-tissue co-morphogenesis and topographic organization of terminal cell types can be achieved in human organoids, opening windows for the development of more complex models of organogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...