Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Updates Surg ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743243

RESUMO

This systematic review and meta-analysis evaluated changes in circulating irisin levels after bariatric surgery. A systematic search was performed across Embase, Scopus, PubMed, and Web of Science for this study. The meta-analysis was conducted using Comprehensive Meta-Analysis (CMA) V4 software. The overall effect size was depicted through a random-effects meta-analysis and the leave-one-out method. The meta-analysis, which included 13 studies with a total of 407 participants, showed a statistically non-significant reduction in circulating irisin levels following bariatric surgery (SMD: - 0.089, 95% CI - 0.281, 0.102, 95% PI: - 0.790, 0.611, p = 0.360; I2:70.56). Our research found no significant change in irisin levels after bariatric surgery. Moreover, these findings were not associated with the type of surgery or the duration of follow-up.

2.
Chem Phys Lipids ; 261: 105396, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38621603

RESUMO

In this study, we have developed a redox-sensitive (RS) liposomal doxorubicin formulation by incorporating 10,10'-diselanediylbis decanoic acid (DDA) organoselenium compound as the RS moiety. Hence, several RS liposomal formulations were prepared by using DOPE, HSPC, DDA, mPEG2000-DSPE, and cholesterol. In situ drug loading using a pH gradient and citrate complex yielded high drug to lipid ratio and encapsulation efficiency (100%) for RS liposomes. Liposomal formulations were characterized in terms of size, surface charge and morphology, drug loading, release properties, cell uptake and cytotoxicity, as well as therapeutic efficacy in BALB/c mice bearing C26 tumor cells. The formulations showed an average particle size of 200 nm with narrow size distributions (PDI < 0.3), and negative surface charges varying from -6 mV to -18.6 mV. Our study confirms that the presence of the DDA compound in liposomes is highly sensitive to hydrogen peroxide at 0.1% w/v, resulting in a significant burst release of up to 40%. The in vivo therapeutic efficacy study in BALB/c mice bearing C26 colon carcinoma confirmed the promising function of RS liposomes in the tumor microenvironment which led to a prolonged median survival time (MST). The addition of hydrogenated soy phosphatidylcholine (HSPC) with a high transition temperature (Tm: 52-53.5°C) extended the MST of our 3-component formulation of F14 (DOPE/HSPC/DDA) to 60 days in comparison to Caelyx (PEGylated liposomal Dox), which is not RS-sensitive (39 days). Overall, HSPC liposomes bearing RS-sensitive moiety enhanced therapeutic efficacy against colon cancer in vitro and in vivo. This achievement unequivocally underscores the criticality of high-TM phospholipids, particularly HSPC, in significantly enhancing liposome stability within the bloodstream. In addition, RS liposomes enable the on-demand release of drugs, leveraging the redox environment of tumor cells, thereby augmenting the efficacy of the formulation.


Assuntos
Neoplasias do Colo , Doxorrubicina , Camundongos Endogâmicos BALB C , Oxirredução , Fosfolipídeos , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/análogos & derivados , Animais , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Camundongos , Fosfolipídeos/química , Temperatura , Polietilenoglicóis/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Lipossomos/química , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Tamanho da Partícula
3.
Obes Surg ; 33(11): 3602-3610, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37770776

RESUMO

BACKGROUND: Obesity is a chronic inflammatory condition and this meta-analysis evaluated the impact of bariatric surgery on SAA. METHODS: Studies included all types of bariatric surgery where SAA was measured before and after the surgical procedure. RESULTS: Meta-analysis of 11 clinical studies (n = 394 individuals) confirmed a significant reduction in SAA following bariatric surgery (SMD: - 0.971, 95% CI: - 2.721, 0.779, p < 0.001). Meta-regression did not show any association between the changes in BMI and the absolute difference in SAA levels. No relationship between the changes in SAA and the length of follow-up was found. CONCLUSION: Bariatric surgery significantly improved SAA. The decrease in SAA was not related to time after surgery or changes in BMI. Bariatric surgery may thus have an independent effect on SAA.


Assuntos
Cirurgia Bariátrica , Obesidade Mórbida , Humanos , Obesidade Mórbida/cirurgia , Proteína Amiloide A Sérica/análise , Obesidade/cirurgia
4.
J Liposome Res ; : 1-18, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647288

RESUMO

PEGylation is a commonly used approach to prolong the blood circulation time of cationic liposomes. However, PEGylation is associated with the "PEG dilemma", which hinders binding and uptake into tumor cells. The cleavable PEG products are a possible solution to this problem. In the current research, doxorubicin-loaded cationic liposomes (Dox-CLs) surface-conjugated with a matrix metalloproteinase-2 (MMP-2)-sensitive octapeptide linker-PEG derivative were prepared and compared to non-PEGylated and PEGylated CLs in terms of size, surface charge, drug encapsulation and release, uptake, in vivo pharmacokinetics, and anticancer efficacy. It was postulated that PEG deshielding in response to the overexpressed MMP-2 in the tumor microenvironment increases the interaction of protected CLs with cellular membranes and improves their uptake by tumor cells/vasculature. MMP2-responsive Dox-CLs had particle sizes of ∼115-140 nm, surface charges of ∼+25 mV, and encapsulation efficiencies of ∼85-95%. In vitro cytotoxicity assessments showed significantly enhanced uptake and cytotoxicity of PEG-cleavable CLs compared to their non-cleavable PEG-coated counterparts or Caelyx®. Also, the chick chorioallantoic membrane assay showed great antiangiogenesis ability of Dox-CLs leading to target and prevent tumor neovascularization. Besides, in vivo studies showed an effective therapeutic efficacy of PEG-cleavable Dox-CLs in murine colorectal cancer with negligible hematological and histopathological toxicity. Altogether, our results showed that MMP2-responsive Dox-CLs could be served as a promising approach to improve tumor drug delivery and uptake.

5.
Drug Discov Today ; 28(6): 103599, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116826

RESUMO

Nanomedicine has emerged as a field in which there are opportunities to improve the diagnosis, treatment and prevention of incurable diseases. Pulmonary arterial hypertension (PAH) is known as a severe and fatal disease affecting children and adults. Conventional treatments have not produced optimal effectiveness in treating this condition. Several reasons for this include drug instability, poor solubility of the drug and a shortened duration of pharmacological action. The present review focuses on new approaches for delivering anti-PAH drugs using nanotechnology with the aim of overcoming these shortcomings and increasing their efficacy. Solid-lipid nanoparticles, liposomes, metal-organic frameworks and polymeric nanoparticles have demonstrated advantages for the potential treatment of PAH, including increased drug bioavailability, drug solubility and accumulation in the lungs.


Assuntos
Nanopartículas , Hipertensão Arterial Pulmonar , Criança , Humanos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Nanomedicina , Sistemas de Liberação de Medicamentos , Micelas , Nanopartículas/uso terapêutico , Nanotecnologia
6.
Cancer Nanotechnol ; 14(1): 18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910721

RESUMO

Background: Colorectal cancer is one of the prominent leading causes of fatality worldwide. Despite recent advancements within the field of cancer therapy, the cure rates and long-term survivals of patients suffering from colorectal cancer have changed little. The application of conventional chemotherapeutic agents like doxorubicin is limited by some drawbacks such as cardiotoxicity and hematotoxicity. Therefore, nanotechnology has been exploited as a promising solution to address these problems. In this study, we synthesized and compared the anticancer efficacy of doxorubicin-loaded liposomes that were surface engineered with the 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-matrix metalloproteinase-2 (MMP-2) cleavable peptide-polyethylene glycol (PEG) conjugate. The peptide linker was used to cleave in response to the upregulated MMP-2 in the tumor microenvironment, thus exposing a positive charge via PEG-deshielding and enhancing liposomal uptake by tumor cells/vasculature. Liposomal formulations were characterized in terms of size, surface charge and morphology, drug loading, release properties, cell binding and uptake, and cytotoxicity. Results: The formulations had particle sizes of ~ 100-170 nm, narrow distribution (PDI ˂ 0.2), and various surface charges (- 10.2 mV to + 17.6 mV). MMP-2 overexpression was shown in several cancer cell lines (C26, 4T1, and B16F10) as compared to the normal NIH-3T3 fibroblast cells by gelatin zymography and qRT-PCR. In vitro results demonstrated enhanced antitumor efficacy of the PEG-cleavable cationic liposomes (CLs) as compared to the commercial Caelyx® (up to fivefold) and the chick chorioallantoic membrane assay showed their great antiangiogenesis potential to target and suppress tumor neovascularization. The pharmacokinetics and efficacy studies also indicated higher tumor accumulation and extended survival rates in C26 tumor-bearing mice treated with the MMP-2 cleavable CLs as compared to the non-cleavable CLs with no remarkable sign of toxicity in healthy tissues. Conclusion: Altogether, the MMP-2-cleavable CLs have great potency to improve tumor-targeted drug delivery and cellular/tumor-vasculature uptake which merits further investigation. Supplementary Information: The online version contains supplementary material available at 10.1186/s12645-023-00169-8.

7.
IET Nanobiotechnol ; 16(7-8): 259-272, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35983586

RESUMO

The size of nanoliposome-encapsulated drugs significantly affects their therapeutic efficacy, biodistribution, targeting ability, and toxicity profile for the cancer treatment. In the present study, the biodistribution and anti-tumoral activity of PEGylated liposomal Doxorubicin (PLD) formulations with different sizes were investigated. First, 100, 200, and 400 nm PLDs were prepared by remote loading procedure and characterised for their size, zeta potential, encapsulation efficacy, and release properties. Then, in vitro cellular uptake and cytotoxicity were studied by flow cytometry and MTT assay, and compared with commercially available PLD Caelyx® . In vivo studies were applied on BALB/c mice bearing C26 colon carcinoma. The cytotoxicity and cellular uptake tests did not demonstrate any statistically significant differences between PLDs. The biodistribution results showed that Caelyx® and 100 nm liposomal formulations had the most doxorubicin (Dox) accumulation in the tumour tissue and, as a result, considerably suppressed tumour growth compared with 200 and 400 nm PLDs. In contrast, larger nanoparticles (200 and 400 nm formulations) had more accumulation in the liver and spleen. This study revealed that 90 nm Caelyx® biodistribution profile led to the stronger anti-tumour activity of the drug and hence significant survival extension, and showed the importance of vesicle size in the targeting of nanoparticles to the tumour microenvironment for the treatment of cancer.


Assuntos
Neoplasias do Colo , Doxorrubicina , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Doxorrubicina/análogos & derivados , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Polietilenoglicóis , Distribuição Tecidual , Microambiente Tumoral
8.
Sci Rep ; 12(1): 11310, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788647

RESUMO

In this study redox-sensitive (RS) liposomes manufactured using 10,10'-diselanediylbis decanoic acid (DDA), an organoselenium RS compound, to enhance the therapeutic performance of doxorubicin (Dox). The DDA structure was confirmed by 1H NMR and LC-MS/MS. Various liposomal formulations (33 formulations) were prepared using DOPE, Egg PC, and DOPC with Tm Ë‚ 0 and DDA. Some formulations had mPEG2000-DSPE and cholesterol. After extrusion, the external phase was exchanged with sodium bicarbonate to create a pH gradient. Then, Dox was remotely loaded into liposomes. The optimum formulations indicated a burst release of 30% in the presence of 0.1% hydrogen peroxide at pH 6.5, thanks to the redox-sensitive role of DDA moieties; conversely, Caelyx (PEGylated liposomal Dox) showed negligible release at this condition. RS liposomes consisting of DOPE/Egg PC/DDA at 37.5 /60/2.5% molar ratio, efficiently inhibited C26 tumors among other formulations. The release of Dox from RS liposomes in the TME through the DDA link fracture triggered by ROS or glutathione is seemingly the prerequisite for the formulations to exert their therapeutic action. These findings suggest the potential application of such intelligent formulations in the treatment of various malignancies where the TME redox feature could be exploited to achieve an improved therapeutic response.


Assuntos
Lipossomos , Neoplasias , Cromatografia Líquida , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Humanos , Lipossomos/química , Oxirredução , Polietilenoglicóis/química , Espectrometria de Massas em Tandem
9.
Int J Pharm ; 623: 121946, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35750277

RESUMO

Cis-Diaminedichloroplatinum (cisplatin, CDDP) remained among the most widely used anti-cancer agents; however, management of the dose-limiting side effects is still a great hurdle to its therapeutic potential. In the framework of this investigation, novel approach was developed for CDDP encasement within liposome based on the formation of a coordination bond between the platinum (II) atom and a carboxylic group in aspartic acid (AA) and glutamic acid (GA). We have also compared two methods of preparation based on equilibration and conventional lipid film hydration. For this, first FTIR spectra of the conjugates confirmed coordination bond between Pt and the carboxylate moieties. The PEGylated liposomes composed of HSPC, cholesterol and DPPG had a size of 134 to 197 nm and negative zeta potential (-14.20 to -20.90 mv). Cytotoxicity study revealed IC50 values of <7 µg/ml for liposomes. In vivo plasma retention following iv administration indicated the potential of liposome in maintaining cisplatin levels within the circulation, while free cisplatin and cisplatin conjugates were promptly eliminated. Anti-tumor efficacy studies following iv injections at 3 mg/kg cisplatin weekly for three weeks in C26 tumor bearing BALB/c mice demonstrated the potential of the cisplatin liposomes in tumor growth inhibition. Pt-complexes were not as effective as liposomal formulations showing the crucial role of liposomes in maintaining cisplatin levels within blood circulation. Overall, the developed cisplatin liposome seems to be a promising therapeutic approach for targeting solid tumors.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Aminoácidos , Animais , Linhagem Celular Tumoral , Cisplatino , Lipossomos/química , Camundongos , Fosfolipídeos/química , Polietilenoglicóis/química
11.
Pharmacol Res ; 163: 105287, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33157235

RESUMO

Resveratrol, trans 3,5,4'-trihydroxystilbene, is a stilbenoid polyphenol with a wide range of properties including antioxidant, neuroprotective, cardioprotective, anti-inflammatory and anticancer activities. It is found in the skins of grape (50-100 µg/mL), red wine, peanuts, bilberries, blueberries and cranberries. The most important effects of resveratrol have been found in cardiovascular disease, with pulmonary arterial hypertension (PAH) being a major severe and progressive component. Many factors are involved in the pathogenesis of PAH, including enzymes, transcription factors, proteins, chemokines, cytokines, hypoxia, oxidative stress and others. Resveratrol treats PAH through its actions on various signaling pathways. These signaling pathways are mainly suppressed SphK1-mediated NF-κB activation, BMP/SMAD signaling pathway, miR-638 and NR4A3/cyclin D1 pathway, SIRT1 pathway, Nrf-2, HIF-1 α expression, MAPK/ERK1 and PI3K/AKT pathways, and RhoA-ROCK signaling pathway. Resveratrol efficiently inhibits the proliferation of pulmonary arterial smooth muscle cells and right ventricular remodeling, which are underlying processes leading to enhanced PAH. While supportive evidence from randomized controlled trials is yet to be available, current in vitro and in vivo studies seem to be convincing and suggest a therapeutic promise for the use of resveratrol in PAH.


Assuntos
Hipertensão Arterial Pulmonar/tratamento farmacológico , Estilbenos/uso terapêutico , Animais , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/citologia , Estilbenos/farmacologia , Remodelação Vascular/efeitos dos fármacos
12.
Int J Pharm ; 589: 119882, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32941986

RESUMO

Pharmaceutical nanotechnology introduces novel strategies in designing smart nanoscale drug delivery systems (NDDSs) capable of responding to specific conditions. These smart responsive NDDSs respond to specific conditions already established in the tumor microenvironment (TME) resulting in greater drug release following accumulation through enhanced permeation and retention (EPR) effect. Among various specific conditions, reactive oxygen species (ROS) and glutathione (GSH) have been extensively used to improve tumor targeting. While cells of the tumor microenvironment including immune cells, cancer-associated fibroblasts, endothelial cells and tumor invasive cells are responsible for the production and elevation of ROS levels, high levels of GSH inside tumor cells establish highly reducing environment, which in turn maintain cell survival. Abnormal ROS generation in the tumor microenvironment helps with designing highly specific ROS-sensitive NDDSs with the potential to release the payload next to the tumor cells. On the other hand, elevated levels of tumor GSH allows for designing NDDSs bearing reductively cleavable linkage to enhance drug release exploiting the dramatic higher intracellular GSH. The aim of the current review is to emphasize the requirements for developing various NDDSs including liposomes, polymeric nanoparticles, micelles, mesoporous silica nanoparticles, nanogels and prodrugs, capable of responding to TME using their Redox-sensitive moieties.


Assuntos
Nanopartículas , Neoplasias , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Células Endoteliais , Neoplasias/tratamento farmacológico , Oxirredução
13.
Int J Pharm ; 572: 118716, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31705978

RESUMO

There are various drug delivery systems (DDSs) among which nanoliposomal formulations are among the most prominent. Despite the superiority of nanoliposomal DDSs compared to conventional drug delivery methods, recent reports have claimed that they can deliver small amounts of the injected dose to target site by passive targeting. However, our understanding of tumor microenvironment features, including dysregulation of pH, the high intracellular concentration of glutathione, change in the amount and expression of some enzymes, reactive oxygen species, hypoxia, and ATP concentrations, has driven the scope of research into the use of these endogenous stimuli for a design of smart linkers. These linkers optimize the release of payloads in favorable target sites and avoid premature releasing in non-favorable off-target sites. In this review, we discuss particular linkers, which are able to respond to the specific endogenous conditions, and could be used in nanoliposomal DDSs, based on pathophysiological changes that occur in tumors. Furthermore, structural and chemical properties of these linkers and other potential linkers, which could be used in nanoliposomal DDSs, have been reviewed.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Humanos , Lipossomos , Nanopartículas/química , Microambiente Tumoral
14.
Biomed Pharmacother ; 104: 465-473, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29793179

RESUMO

Berberine, as a phytochemical component of some medicinal Chinese herbs (most frequently Berberis vulgaris), is an isoquinoline alkaloid with many therapeutic effects including anti-viral, anti-microbial, anti-diarrhea, anti-inflammatory and anti-tumor effects. Berberine has some significant effects on type 2 diabetes through adenosine monophosphate-activated protein kinase activation, glycolysis stimulation, and mitochondrial function inhibition which subsequently improves both lipid and glucose metabolism. Some other effects of berberine on congestive heart failure, cardiac arrhythmia and hypertension have been reported. Beside the beneficial effects of berberine, some limitations including poor aqueous solubility, slight absorption, and low bioavailability have hindered its applications. To overcome these limitations, nanotechnology has been considered as main strategy. This review describes different types of nanocarriers (polymeric based, magnetic mesoporous silica based, lipid based, dendrimer based, graphene based, silver and gold nanoparticles) have been used for encapsulation of berberine.


Assuntos
Alcaloides/química , Berberina/química , Berberis/química , Nanopartículas/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...