Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2587, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297148

RESUMO

Standard enzyme-linked immunosorbent assays based on microplates are frequently utilized for various molecular sensing, disease screening, and nanomedicine applications. Comparing this multi-well plate batched analysis to non-batched or non-standard testing, the diagnosis expenses per patient are drastically reduced. However, the requirement for rather big and pricey readout instruments prevents their application in environments with limited resources, especially in the field. In this work, a handheld cellphone-based colorimetric microplate reader for quick, credible, and novel analysis of digital images of human cancer cell lines at a reasonable price was developed. Using our in-house-developed app, images of the plates are captured and sent to our servers, where they are processed using a machine learning algorithm to produce diagnostic results. Using FDA-approved human epididymis protein of ovary IgG (HE4), prostate cancer cell line (PC3), and bladder cancer cell line (5637) ELISA tests, we successfully examined this mobile platform. The accuracies for the HE4, PC3, and 5637 tests were 93%, 97.5%, and 97.2%, respectively. By contrasting the findings with the measurements made using optical absorption EPOCH microplate readers and optical absorption Tecan microplate readers, this approach was found to be accurate and effective. As a result, digital image colorimetry on smart devices offered a practical, user-friendly, affordable, precise, and effective method for quickly identifying human cancer cell lines. Thus, healthcare providers might use this portable device to carry out high-throughput illness screening, epidemiological investigations or monitor vaccination campaigns.


Assuntos
Telefone Celular , Neoplasias da Próstata , Masculino , Humanos , Colorimetria/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Linhagem Celular
2.
Biosensors (Basel) ; 12(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35884313

RESUMO

Separation and detection of cells and particles in a suspension are essential for various applications, including biomedical investigations and clinical diagnostics. Microfluidics realizes the miniaturization of analytical devices by controlling the motion of a small volume of fluids in microchannels and microchambers. Accordingly, microfluidic devices have been widely used in particle/cell manipulation processes. Different microfluidic methods for particle separation include dielectrophoretic, magnetic, optical, acoustic, hydrodynamic, and chemical techniques. Dielectrophoresis (DEP) is a method for manipulating polarizable particles' trajectories in non-uniform electric fields using unique dielectric characteristics. It provides several advantages for dealing with neutral bioparticles owing to its sensitivity, selectivity, and noninvasive nature. This review provides a detailed study on the signal-based DEP methods that use the applied signal parameters, including frequency, amplitude, phase, and shape for cell/particle separation and manipulation. Rather than employing complex channels or time-consuming fabrication procedures, these methods realize sorting and detecting the cells/particles by modifying the signal parameters while using a relatively simple device. In addition, these methods can significantly impact clinical diagnostics by making low-cost and rapid separation possible. We conclude the review by discussing the technical and biological challenges of DEP techniques and providing future perspectives in this field.


Assuntos
Técnicas Analíticas Microfluídicas , Separação Celular/métodos , Eletroforese , Dispositivos Lab-On-A-Chip , Microfluídica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...