Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Expo Sci Environ Epidemiol ; 25(4): 343-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25944701

RESUMO

The Consumer Product Safety Commission (CPSC) convened a Chronic Hazard Advisory Panel (CHAP) on Phthalates found in children's toys, and childcare products, and in products used by women of childbearing age. The CHAP conducted a risk assessment on phthalates and phthalate substitutes, and made recommendations to either ban, impose an interim ban, or allow the continued use of phthalates and phthalate substitutes in the above products. After a review of the literature, the evaluation included toxic end points of primary concern, biomonitoring results, extant exposure reconstruction, and epidemiological results. The health end points chosen were associated with the rat phthalate syndrome, which is characterized by malformations of the epididymis, vas deferens, seminal vesicles, prostate, external genitalia (hypospadias), and by cryptorchidism (undescended testes), retention of nipples/areolae, and demasculinization (~incomplete masculinization) of the perineum, resulting in reduced anogenital distance. Risk assessment demonstrated that some phthalates should be permanently banned, removed from the banned list, or remain interim banned. Biomonitoring and toxicology data provided the strongest basis for a mixture risk assessment. In contrast, external exposure data were the weakest and need to be upgraded for epidemiological studies and risk assessments. Such studies would focus on routes and sources. The review presents recommendations and uncertainties.


Assuntos
Qualidade de Produtos para o Consumidor , Exposição Ambiental/análise , Equipamentos para Lactente , Ácidos Ftálicos/análise , Plastificantes/análise , Jogos e Brinquedos , Criança , Cuidado da Criança , Pré-Escolar , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental , Europa (Continente) , Feminino , Humanos , Lactente , América do Norte , Ácidos Ftálicos/toxicidade , Plastificantes/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Medição de Risco
2.
Ann Appl Stat ; 4(4): 2024-2048, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-23946863

RESUMO

It has been estimated that about 30% of the genes in the human genome are regulated by microRNAs (miRNAs). These are short RNA sequences that can down-regulate the levels of mRNAs or proteins in animals and plants. Genes regulated by miRNAs are called targets. Typically, methods for target prediction are based solely on sequence data and on the structure information. In this paper we propose a Bayesian graphical modeling approach that infers the miRNA regulatory network by integrating expression levels of miRNAs with their potential mRNA targets and, via the prior probability model, with their sequence/structure information. We use a directed graphical model with a particular structure adapted to our data based on biological considerations. We then achieve network inference using stochastic search methods for variable selection that allow us to explore the huge model space via MCMC. A time-dependent coefficients model is also implemented. We consider experimental data from a study on a very well-known developmental toxicant causing neural tube defects, hyperthermia. Some of the pairs of target gene and miRNA we identify seem very plausible and warrant future investigation. Our proposed method is general and can be easily applied to other types of network inference by integrating multiple data sources.

3.
Birth Defects Res A Clin Mol Teratol ; 85(8): 732-40, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19639652

RESUMO

BACKGROUND: It is well known that a variety of teratogens induce neural tube defects in animals; however, less is known about proteins that play a role in protecting embryos from teratogen-induced neural tube defects. Previously, our laboratory has shown that embryos overexpressing the 70-Da heat shock proteins (HSPs) Hspa1a and Hspa1b were partially protected from the deleterious effects of exposure to hyperthermia in vitro. METHODS: In the present studies, we have used a transgenic mouse in which both of the stress-inducible HSPs Hspa1a and Hspa1b were deleted by homologous recombination. Time-mated Hspa1a/a1b(-/-) (KO) and wildtype (WT) mice were exposed to hyperthermia in vivo on gestational day 8.5. RESULTS: Results show that 52% of the gestational day 15 fetuses from KO litters were exencephalic, whereas only 20% of WT fetuses were affected. In addition, 6% of treated KO fetuses also exhibited eye defects (microphthalmia and anopthalmia), defects not observed in WT fetuses exposed to hyperthermia. Lysotracker red staining and caspase-3 enzyme activity were examined within 10 hours after exposure to hyperthermia, and significantly greater levels of apoptosis and enzyme activity were observed in the KO embryos compared with WT embryos. CONCLUSIONS: These results show that embryos lacking the Hspa1a and Hspa1b genes are significantly more sensitive to hyperthermia-induced neural tube and eye defects, and this increased sensitivity is correlated with increased amounts of apoptosis. Thus, these results also suggest that Hspa1a and Hspa1b play an important role in protecting embryos from hyperthermia-induced congenital defects, possibly by reducing hyperthermia-induced apoptosis.


Assuntos
Febre/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP70/metabolismo , Defeitos do Tubo Neural/prevenção & controle , Teratogênicos/toxicidade , Animais , Modelos Animais de Doenças , Desenvolvimento Embrionário/efeitos dos fármacos , Anormalidades do Olho/induzido quimicamente , Anormalidades do Olho/embriologia , Anormalidades do Olho/prevenção & controle , Feminino , Proteínas de Choque Térmico HSP70/genética , Resposta ao Choque Térmico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/etiologia , Gravidez
4.
Birth Defects Res A Clin Mol Teratol ; 85(6): 546-55, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19229884

RESUMO

BACKGROUND: Neural tube defects (NTDs) are one of the most common human birth defects, with a prevalence of approximately 1 in 1000 live births in the United States. In animal studies, deletion of p53 leads to a significant increase in embryos that exhibit exencephaly. Whereas several studies have closely investigated the morphologic changes of p53-deficient embryos, no study has reported the molecular-level alteration in p53-deficient embryos. Here we attempt to identify genes and microRNAs (miRNAs) modified by deletion of p53 in day 8.5 mouse embryos. METHODS: Mouse embryos from p53 heterozygous crosses were collected, genotyped, and embryos of similar genotype (+/+; +/-; -/-) were pooled. RNA from the pooled samples was isolated to determine mRNA and miRNA expression levels using Whole Genome Bioarrays and Low Density Arrays, respectively. RESULTS: In p53 -/- embryos, 388 genes showed statistically significant alteration in gene expression of more than twofold compared to p53 +/+ embryos. Expression of p53 and well known p53 target genes, such as p21 and cyclin G1, were significantly down-regulated in p53 -/- embryos. In contrast, expression of other p53 target genes, such as Mdm2, Noxa, and Puma, were unchanged. We also identified six genes (Csk, Itga3, Jarid2, Prkaca, Rarg, and Sall4), known to cause NTDs when deleted, that are also down-regulated in p53 -/- embryos. Finally, five miRNAs (mir-1, mir-30e-3p, mir-142-3p, mir-301, and mir-331) also showed statistically significant alterations in expression levels in p53 -/- embryos compared to p53 +/+ embryos. Combined analysis of the experimental data using stepwise regression model and two publicly available algorithms identified putative target genes of these miRNAs. CONCLUSIONS: Our data have identified genes and miRNAs that may be involved in the mechanisms underlining NTDs and begin to define the developmental role of p53 in the etiology of NTDs.


Assuntos
Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/biossíntese , Defeitos do Tubo Neural/metabolismo , Proteína Supressora de Tumor p53 , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Defeitos do Tubo Neural/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-19140129

RESUMO

BACKGROUND: Hyperthermia (HS) is a well-studied teratogen that induces serious malformations, including neural tube defects. Our previous studies have shown that HS induces apoptosis by activating the mitochondrial apoptotic pathway. Prior to activation of the mitochondrial apoptotic pathway, HS also activates p53 and its target genes. In the present study, we determine whether p53 and/or p21 play a role as teratogen suppressors or inducers of HS-induced malformations. METHODS: Pregnant mice carrying all three p53 or p21 genotype embryos were exposed to HS on day 8.5. Subsequently, fetuses were collected on day 15.5, and genotyped. In addition to genotype, we also determined the number of resorptions and dead fetuses as well as the number and types of external malformations. RESULTS: In the absence of HS exposure, fetuses exhibiting exencephaly and spina bifida were observed in approximately 11% of p53 -/- fetuses, whereas no malformations were observed among p21 -/- fetuses. Exposure to HS resulted in an increase in exencephaly and polydactyly in fetuses of all three p53 genotypes. However, the incidence of these malformations was statistically significantly higher in p53 -/- compared to p53 +/- and p53 +/+ fetuses. Exencephaly was the only malformation observed in p21 fetuses exposed to HS, with an approximately 2-fold increase among p21 +/- and a 3-fold increase among p21 -/- compared to p21 +/+ fetuses. CONCLUSIONS: Our study confirms that p53 plays a role in normal development and has shown, for the first time that p53 and p21 function to suppress HS-induced malformations.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Desenvolvimento Embrionário/genética , Febre , Regulação da Expressão Gênica no Desenvolvimento , Defeitos do Tubo Neural/genética , Disrafismo Espinal/genética , Proteína Supressora de Tumor p53/genética , Animais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Genótipo , Camundongos , Camundongos Knockout , Defeitos do Tubo Neural/etiologia , Defeitos do Tubo Neural/metabolismo , Gravidez , Disrafismo Espinal/etiologia , Disrafismo Espinal/metabolismo , Proteína Supressora de Tumor p53/metabolismo
6.
Birth Defects Res A Clin Mol Teratol ; 85(3): 184-92, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19180648

RESUMO

BACKGROUND: Maternal hyperthermia is one causative factor in various congenital anomalies in experimental animals and humans. In the present study, we assessed the effects of high temperature on limb myogenesis in mice. METHODS: Pregnant mice, C57BL/6 strain, were exposed to hyperthermia (43 degrees C, 5 minutes) on embryonic day (ED) 8. Fetuses on ED 11, 13, 15, and 17 and neonates on postnatal day (PD) 1 were collected. To characterize the effects of hyperthermia on myogenesis-related factors Pax3, MyoD, myogenin, and myosin heavy chain (MyHC) during skeletal muscle development, we performed RT-PCR, western blotting, immunohistochemistry, and transmission electron microscopy. RESULTS: Pax3 gene expression was still detected on ED 13 in hyperthermia-exposed fetuses. The expression of MyoD protein was down-regulated in fetuses exposed to hyperthermia. In contrast, myogenin and MyHC protein expression were up-regulated on PD 1 and ED 17, respectively, in the group exposed to hyperthermia. Immunohistochemical analysis confirmed the findings from western blot analysis. Compared with control neonates, a TEM study revealed immature muscle fibers in PD 1 hyperthermia neonates. Thus, our studies showed that maternal hyperthermia induced delayed expression of Pax3 and inhibited expression of MyoD proteins, which are known to play important roles in migration of myogenic progenitor cells, and in myoblast proliferation. In addition, maternal hyperthermia also delayed the expression of myogenin protein for the formation of myotubes, and MyHC protein, which is one of the final muscle differentiation factors. CONCLUSION: Our data suggest that maternal hyperthermia delays limb myogenesis in part by disregulating the expression of key myogenesis-related factors.


Assuntos
Febre/metabolismo , Desenvolvimento Muscular/fisiologia , Extremidade Superior/embriologia , Animais , Embrião de Mamíferos/metabolismo , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Proteína MyoD/metabolismo , Miogenina/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Gravidez , Extremidade Superior/fisiologia
7.
Congenit Anom (Kyoto) ; 48(1): 7-17, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18230117

RESUMO

Research over the past 50 years has consistently documented that cell death is an integral part of both normal development and the etiology of birth defects; however, the significance of this cell death has been, until recently, unclear. Research published during the past 15 years has now shown that programmed cell death (PCD) and teratogen-induced cell death are genetically controlled processes (apoptosis) that play important roles in both normal and abnormal development. Therefore, the purpose of this review is to highlight what is known about PCD and teratogen-induced cell death and their relationships to the mechanisms of apoptosis and abnormal development.


Assuntos
Apoptose/fisiologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Embrião de Galinha , Ciclofosfamida/análogos & derivados , Ciclofosfamida/toxicidade , Citocromos c/metabolismo , Extremidades/embriologia , Febre/embriologia , Deformidades Congênitas dos Membros/embriologia , Camundongos , Teratogênicos/farmacologia , Proteína Supressora de Tumor p53/fisiologia
8.
Toxicol Sci ; 95(1): 257-69, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17068108

RESUMO

Hyperthermia (HS) and 4-hydroperoxycyclophosphamide (4CP) activate the mitochondrial apoptotic pathway in day 9 mouse embryos. Previous microarray analyses Microarray analyses revealed that several p53 target genes are upregulated after exposure to HS or 4CP, suggesting a role for p53 in teratogen-induced apoptosis. To explore the role of p53, we assessed the activation of p53 in day 9 mouse embryos exposed to HS or 4CP in vitro. Both teratogens induced the accumulation of p53 and phosphorylation of p53 at ser-15, two hallmarks of p53 activation. HS and 4CP also induced an increase in Noxa and Puma mRNAs, transcripts of two known proapoptotic p53 target genes; however, these two teratogens did not induce significant increases in NOXA and PUMA proteins, suggesting that p53 does not activate the mitochondrial apoptotic pathway by transcriptionally upregulating the expression of NOXA and PUMA proteins. HS and 4CP also induced the expression of p21 mRNA and protein, suggesting a role for p53 in teratogen-induced cell cycle arrest. Previously, we also showed that HS and 4CP activate the apoptotic pathway in the embryo proper (head and trunk) but not in the heart. We now show that HS and 4CP induce a robust activation of p53 in the embryo proper but an attenuated induction in the heart. HS and 4CP induce the expression of p21 protein in majority of the cells in the embryo; however, expression of NOXA and PUMA proteins were not significantly induced in heads, hearts, or trunks of day 9 embryos. Overall, our results suggest that p53 may play a transcription-dependent role in teratogen-induced cell cycle arrest but a transcription-independent role in teratogen-induced apoptosis in day 9 mouse embryos exposed to HS or 4CP.


Assuntos
Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Teratogênicos/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Western Blotting , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclofosfamida/análogos & derivados , Ciclofosfamida/toxicidade , Técnicas de Cultura Embrionária , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Temperatura Alta/efeitos adversos , Cinética , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Proteínas Supressoras de Tumor/metabolismo
9.
Reprod Toxicol ; 19(3): 291-304, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15686865

RESUMO

The objective of this presentation is to review the major proteomic technologies available to developmental toxicologists and, when possible, to provide examples of how various proteomic technologies have been used in developmental toxicology or toxicology in general. The field of proteomics is too broad for us to go into great depth about each technology, so we have attempted to provide brief overviews supplemented with many references that cover the subjects in more detail. Proteomics tools produce a global view of complex biological systems by examining complex protein mixtures using large-scale, high-throughput technologies. These technologies speed up the process of protein separation, quantification, and identification. As an important complement to genomics, proteomics allows for the examination of the entire complement of proteins in an organism, tissue, or cell-type. Current proteomics technologies not only identify protein expression, but also post-translational modifications and protein interactions. The field of proteomics is expanding rapidly to provide greater volume and quality of protein information to help understand the multifaceted nature of biological systems.


Assuntos
Biologia do Desenvolvimento , Proteômica/métodos , Toxicologia , Animais , Eletroforese em Gel Bidimensional , Humanos , Marcação por Isótopo , Espectrometria de Massas , Análise Serial de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Técnicas do Sistema de Duplo-Híbrido
10.
Toxicol Sci ; 79(2): 345-59, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14976350

RESUMO

Teratogen-induced alterations in gene expression play an important role in the genesis of malformations in animals. The recent development of DNA microarrays now offers the opportunity to monitor global changes in gene expression and therefore the potential to obtain significant new information concerning both normal and abnormal development. RNA was isolated from day-9 mouse embryos at 1 and 5 h after exposure to hyperthermia (HS) or 4-hydroperoxycyclophosphamide (4CP) and compared to RNA isolated from concurrent controls using mouse cDNA microarrays. Cy5/Cy3 intensity data were extracted using Spot-on Image software and then normalized using the statistical software program R/maanova. Differentially expressed genes were identified using a linear mixed-effects model and p values derived from t-test statistics. Approximately 9000 genes show statistically significant alterations in expression in day-9 mouse embryos exposed to HS or 4CP. HS and 4CP also induce alterations in the expression of distinct sets of genes, e.g., DNA replication/repair, cell cycle, signal transduction, and transcription-related genes. As expected, a variety of heat shock genes are upregulated by HS but not 4CP. Among genes whose expression is altered by both HS and 4CP, cluster analysis identified three p53 target genes (Cyclin G1, Gtse1, and Mdm2), and follow up studies confirmed that p53 is activated in embryos exposed to these two teratogens. In addition, cluster analyses also revealed that HS but not 4CP induces the downregulation of genes encoding key enzymes in the cholesterol biosynthesis pathway. Thus, our microarray data have identified one potentially important pathway (p53) common to both HS- and 4CP-induced teratogenesis and another pathway (cholesterol biosynthesis) potentially important, but specific to HS-induced teratogenesis.


Assuntos
Ciclofosfamida/análogos & derivados , Ciclofosfamida/toxicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Teratogênicos/toxicidade , Animais , Colesterol/biossíntese , Colesterol/genética , Embrião de Mamíferos , Feminino , Genes p53 , Hipertermia Induzida , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , RNA Mensageiro/biossíntese
11.
Birth Defects Res A Clin Mol Teratol ; 67(2): 98-107, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12769505

RESUMO

BACKGROUND: Using vital dyes, we have previously shown that while hyperthermia (HS), 4-hydroperoxycyclophosphamide (4CP), and staurosporine (ST) induce cell death within specific tissues (e.g., neuroepithelium) of day 9 mouse embryos, cells of the heart are resistant to the cell death-inducing potential of these teratogens. Subsequent work has shown that teratogen-induced cell death is associated with activation of the mitochondrial apoptotic pathway, i.e., release of cytochrome c from mitochondria, activation/cleavage of procaspase-9, -3, and -2, inactivation of poly(ADP-ribose) polymerase, and internucleosomal fragmentation of DNA, whereas resistance to teratogen-induced cell death in the heart is associated with a failure to activate this pathway. Teratogen-induced activation of the mitochondrial apoptotic pathway is initiated between 2.5 and 5 hr after teratogens are added to the culture medium. Because both the heart and the surrounding yolk sac are essential to successful development of mouse embryos during early postimplantation mouse development, we hypothesized that cells of the yolk sac are also resistant to teratogen-induced cell death. METHODS: To test our hypothesis, we cultured day 8.5 mouse conceptuses (embryo plus yolk sac) in whole embryo culture. On the morning of day 9, conceptuses were exposed to HS (43 degrees C for 15 min and then returned to 37 degrees C), 4CP (40 microM, 5-10 hr), or ST (0.5 microM 5-10 hr). At 5 and 10 hr after addition of teratogen, conceptuses were removed from culture and dissected into embryo and yolk sac. Activation of the mitochondrial apoptotic pathway was then assessed separately in embryos and yolk sacs using Western blot analysis to detect activation of procaspase-9, -3, and -2, enzyme assays to measure caspase-3-like activity, and immunohistochemistry to detect caspase-3 activation/cleavage in yolk sac cells. RESULTS: Although Western blot analysis revealed that procaspase-9, -3, and -2 were activated/cleaved in the embryo as early as the 5-hr time point, activation/cleavage of these caspases could not be detected in the yolk sac at either the 5- or 10-hr time point. Using an enzyme assay, we determined that caspase-3-like activity in the yolk sac was induced 1.7-fold by HS, 4.4-fold by 4CP, and 3.3-fold by ST. This compares to the embryo in which caspase-3-like activity was induced 45-fold by HS, 26-fold by 4CP, and 45-fold by ST. Using an antibody specific for the active p17 subunit of caspase-3 and immunohistochemistry, we were able to detect a small number of yolk sac cells showing caspase-3 activation. Thus, the low-level induction of caspase-3-like activity in the yolk sac is in part related to activation/cleavage of procaspase-3. CONCLUSIONS: Results presented indicate that cells of the extraembryonic yolk sac, like cells of the embryonic heart, are substantially more resistant to teratogen-induced activation of the mitochondrial apoptotic pathway and subsequent apoptosis compared to other embryonic tissues, particularly cells of the neuroepithelium.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ciclofosfamida/análogos & derivados , Proteínas Fetais/metabolismo , Temperatura Alta/efeitos adversos , Mitocôndrias/fisiologia , Estaurosporina/toxicidade , Teratogênicos/toxicidade , Saco Vitelino/efeitos dos fármacos , Animais , Apoptose/fisiologia , Caspase 3 , Caspases/análise , Ciclofosfamida/toxicidade , Resistência a Medicamentos , Ativação Enzimática , Feminino , Coração Fetal/efeitos dos fármacos , Coração Fetal/ultraestrutura , Idade Gestacional , Cabeça/embriologia , Camundongos , Técnicas de Cultura de Órgãos , Especificidade de Órgãos , Gravidez , Saco Vitelino/ultraestrutura
12.
Birth Defects Res A Clin Mol Teratol ; 67(11): 929-40, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14745931

RESUMO

BACKGROUND: Previously, we showed that teratogens such as hyperthermia activate the mitochondrial apoptotic pathway in day nine mouse embryos. Activation of this pathway involves an initial release of cytochrome c from intermembranous spaces of the mitochondria into the cytoplasm. Cytoplasmic cytochrome c then activates a caspase cascade resulting in the orderly demise of the cell. In addition, we showed that teratogens activate the mitochondrial pathway in cells of the neuroepithelium, but not the heart. METHODS: To further investigate the role of the mitochondrion in teratogen-induced apoptosis, we used transmission electron microscopy (TEM) to compare mitochondrial morphology in cells of the neuroepithelium and heart of control and hyperthermia-treated embryos. Because we know that the apoptotic pathway is activated some time during the first 5 hr after teratogen exposure is initiated, we assessed mitochondrial morphology at 1, 2.5, and 5 hr after day nine mouse embryos were exposed to hyperthermia (43 degrees C, 15 min). RESULTS: In neuroepithelial cells of the prosencephalon, abnormally-shaped mitochondria were observed at the 1 hr time point and thereafter, whereas loss of cristae and shrunken mitochondria were noted at the 5 hr time point. In contrast, no obvious changes in mitochondria of heart cells were observed at any of the time points monitored. CONCLUSIONS: These results indicate that teratogen-induced cell death in neuroepithelial cells is temporally correlated with alterations in mitochondrial morphology, whereas the absence of cell death in the heart is correlated with a corresponding lack of change in mitochondrial morphology. Birth Defects Research (Part A), 2003.


Assuntos
Embrião de Mamíferos/metabolismo , Febre , Mitocôndrias/metabolismo , Animais , Apoptose , Morte Celular , Citocromos c/metabolismo , Citoplasma/metabolismo , Células Epiteliais/ultraestrutura , Feminino , Temperatura Alta , Cinética , Camundongos , Microscopia Eletrônica , Temperatura , Teratogênicos , Fatores de Tempo
13.
Toxicol Appl Pharmacol ; 181(2): 142-51, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12051998

RESUMO

Previously we showed that teratogen-induced cell death in mouse embryos is apoptotic in nature, i.e., involves the release of cytochrome c from mitochondria and the subsequent activation of caspase-3, cleavage of poly (ADP-ribose) polymerase (PARP), and internucleosomal DNA fragmentation. Herein we show that hyperthermia, 4-hydroperoxycyclophosphamide, and staurosporine also activate caspase-9, the apical caspase in the mitochondrial apoptotic pathway. Activation of procaspase-9 is associated with the cleavage of this proenzyme and the generation of two forms of the large subunit, primarily a 39-kDa subunit (p39) but also a lesser amount of a 37-kDa subunit (p37). We also present data that support the idea that the teratogen-induced formation of the p37 subunit in vivo occurs by the cytochrome c-mediated processing of procaspase-9, whereas the p39 subunit is formed by an amplification loop involving caspase-3. We also previously showed that the release of cytochrome c, activation of caspase-3, cleavage of PARP, and DNA fragmentation are blocked in cells of the developing heart, which are resistant to teratogen-induced cell death. We now show that this block in the mitochondrial apoptotic pathway in heart cells extends to the activation of procaspase-9. Thus, our cumulative data indicate that hyperthermia, 4-hydroperoxycyclophosphamide, and staurosporine induce cell death in Day 9 mouse embryos by activating the mitochondrial apoptotic pathway. In addition, our data suggest that cells of the Day 9 mouse embryo that are resistant to teratogen-induced cell death possess multiple mechanisms for inhibiting the mitochondrial apoptotic pathway after a teratogenic exposure.


Assuntos
Anormalidades Induzidas por Medicamentos/enzimologia , Apoptose/efeitos dos fármacos , Caspases/biossíntese , Ciclofosfamida/análogos & derivados , Embrião de Mamíferos/efeitos dos fármacos , Embrião não Mamífero , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Teratogênicos/toxicidade , Western Blotting , Caspase 3 , Caspase 9 , Ciclofosfamida/toxicidade , Embrião de Mamíferos/enzimologia , Inibidores Enzimáticos/toxicidade , Coração/efeitos dos fármacos , Coração/embriologia , Hipertermia Induzida/efeitos adversos , Técnicas In Vitro , Miocárdio/citologia , Miocárdio/enzimologia , Estaurosporina/toxicidade
14.
Teratology ; 65(5): 228-39, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11967922

RESUMO

Cell death is a common and reproducible feature of the development of many mammalian tissues/organs. Two well-known examples of programmed cell death (PCD) are the cell deaths associated with fusion of the neural folds and removal of interdigital mesenchymal cells during digit formation. Like normal development, abnormal development is also associated with increased cell death in tissues/organs that develop abnormally after exposure to a wide variety of teratogens. At least in some instances, teratogens induce cell death in areas of normal PCD, suggesting that there is a link between programmed and teratogen-induced cell death. Although researchers recognized early on that cell death is an integral part of both normal and abnormal development, little was known about the mechanisms of cell death. In 1972, Kerr et al. ('72) showed conclusively that cell deaths, induced in a variety of contexts, followed a reproducible pattern, which they termed apoptosis. The next breakthrough came in the 1980s when Horvitz and his colleagues identified specific cell death genes (ced) that controlled PCD in the roundworm, Caenorhabditis elegans (C. elegans). Identification of ced genes in the roundworm quickly led to the isolation of their mammalian homologues. Subsequent research in the 1990s led to the identification of a cadre of proteins controlling cell death in mammals, i.e., receptors/ligands, caspases, cytochrome c, Apaf-1, Bcl-2 family proteins, and IAPs. Two major pathways of apoptosis have now been elucidated, the receptor-mediated and the mitochondrial apoptotic pathways. The latter pathway, induced by a wide variety of toxic agents, is activated by the release of cytochrome c from mitochondria. Cytochrome c then facilitates the activation of a caspase cascade involving caspase-9 and -3. Activation of these caspases results in the cleavage of a variety of cellular proteins leading to the orderly demise of the cell. Work from my laboratory in the last 5 years has shown that teratogens, such as hyperthermia, 4-hydroperoxycyclophosphamide, and staurosporine, induce cell death in day 9 mouse embryos by activating the mitochondrial apoptotic pathway, i.e., mitochondrial release of cytochrome c, activation of caspase-9 and -3, inactivation of poly (ADP-ribose) polymerase (PARP), and systematic degradation of DNA. Our work, as well as the work of others, has also shown that different tissues within the early post implantation mammalian embryo are differentially sensitive to the cell death inducing potential of teratogens, from exquisite sensitivity of cells in the developing central nervous system to complete resistance of cells in the developing heart. More importantly, we have shown that the resistance of heart cells is directly related to the failure to activate the mitochondrial apoptotic pathway in these cells. Thus, whether a cell dies in response to a teratogen and therefore contributes to the pathogenesis culminating in birth defects, depends, at least in part, by the cell's ability to regulate the mitochondrial apoptotic pathway. Future research aimed at understanding this regulation should provide insight not only into the mechanism of teratogen-induced cell death but also the role of cell death in the genesis of birth defects.


Assuntos
Apoptose/fisiologia , Desenvolvimento Embrionário e Fetal/fisiologia , Animais , Apoptose/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caspases/metabolismo , Humanos , Mamíferos/embriologia , Camundongos , Necrose , Teratogênicos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...