Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37174485

RESUMO

The European flounder (Platichthys flesus), which is closely related to the recently discovered Baltic flounder (Platichthys solemdali), is currently the third most commercially fished species in the Baltic Sea. According to the available data from the Polish Fisheries Monitoring Center and fishermen's observations, the body condition indices of the species in the Baltic Sea have declined in recent years. The aim of the present study was to obtain information on the current patterns of genetic variability and the population structure of the European flounder and to verify whether the Baltic flounder is present in the southern Baltic Sea. Moreover, we aimed to verify whether the observed decline in the body condition indices of the species in the Baltic Sea might be associated with adaptive alterations in its gene pool due to increased fishing pressure. For this purpose, 190 fish were collected from four locations along the central coastline of Poland, i.e., Mechelinki, Wladyslawowo, the Vistula Lagoon in 2018, and the Slupsk Bank in 2020. The fish were morphologically analyzed and then genetically screened by the application of nineteen microsatellite DNA and two diagnostic SNP markers. The examined European flounder specimens displayed a high level of genetic diversity (PIC = 0.832-0.903, I = 2.579-2.768). A lack of significant genetic differentiation (Fst = 0.004, p > 0.05) was observed in all the examined fish, indicating that the European flounder in the sampled area constitutes a single genetic cluster. A significant deficiency in heterozygotes (Fis = 0.093, p < 0.05) and overall deviations from Hardy-Weinberg expectations (H-WE) were only detected in fish sampled from the Slupsk Bank. The estimated effective population size (Ne) among the sampled fish groups varied from 712 (Slupsk Bank) to 10,115 (Wladyslawowo and Mechelinki). However, the recorded values of the Garza-Williamson indicator (M = 0.574-0.600) and the lack of significant (p > 0.05) differences in Heq > He under the SMM model did not support the species' population size changes in the past. The applied SNP markers did not detect the presence of the Baltic flounder among the fish sampled from the studied area. The analysis of an association between biological traits and patterns of genetic diversity did not detect any signs of directional selection or density-dependent adaptive changes in the gene pool of the examined fish that might be caused by increased fishing pressure.

2.
Mar Pollut Bull ; 127: 761-773, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28987450

RESUMO

Sub-Seabed CCS is regarded as a key technology for the reduction of CO2 emissions, but little is known about the mechanisms through which leakages from storage sites impact benthic species. In this study, the biological responses of the infaunal bivalve Limecola balthica to CO2-induced seawater acidification (pH7.7, 7.0, and 6.3) were quantified in 56-day mesocosm experiments. Increased water acidity caused changes in behavioral and physiological traits, but even the most acidic conditions did not prove to be fatal. In response to hypercapnia, the bivalves approached the sediment surface and increased respiration rates. Lower seawater pH reduced shell weight and growth, while it simultaneously increased soft tissue weight; this places L. balthica in a somewhat unique position among marine invertebrates.


Assuntos
Bivalves/efeitos dos fármacos , Dióxido de Carbono/toxicidade , Monitoramento Ambiental/métodos , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Animais , Dióxido de Carbono/análise , Concentração de Íons de Hidrogênio , Oceanos e Mares , Polônia , Medição de Risco , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...