Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 22(7): 812-828, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35333595

RESUMO

This article describes a study of frozen volcanic deposits collected from volcanoes Tolbachik and Bezymianny on the Kamchatka Peninsula, Russia, and Deception Island volcano, Antarctica. In addition, we studied suprasnow ash layers deposited after the 2007 eruptions of volcanoes Shiveluch and Bezymianny on Kamchatka. The main objectives were to characterize the presence and survivability of thermophilic microorganisms in perennially frozen volcanic deposits. As opposed to permafrost from the polar regions, viable thermophiles were detected in volcanic permafrost by cultivation, microscopy, and sequencing. In the permafrost of Tolbachik volcano, we observed methane formation by both psychrophilic and thermophilic methanogenic archaea, while at 37°C, methane production was noticeably lower. Thermophilic bacteria isolated from volcanic permafrost from the Deception Island were 99.93% related to Geobacillus stearothermophilus. Our data showed biological sulfur reduction to sulfide at 85°C and even at 130°C, where hyperthermophilic archaea of the genus Thermoproteus were registered. Sequences of hyperthermophilic bacteria of the genus Caldicellulosiruptor were discovered in clone libraries from fresh volcanic ash deposited on snow. Microorganisms found in volcanic terrestrial permafrost may serve as a model for the alien inhabitants of Mars, a cryogenic planet with numerous volcanoes. Thermophiles and hyperthermophiles and their metabolic processes represent a guideline for the future exploration missions on Mars.


Assuntos
Pergelissolo , Archaea/metabolismo , Meio Ambiente Extraterreno , Metano/química , Pergelissolo/microbiologia , Erupções Vulcânicas
2.
Appl Biochem Biotechnol ; 193(11): 3672-3703, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34351586

RESUMO

Overproduction of the membrane proteins in Escherichia coli cells is a common approach to obtain sufficient material for their functional and structural studies. However, the efficiency of this process can be limited by toxic effects which decrease the viability of the host and lead to low yield of the product. During the expression of the esterase autotransporter AT877 from Psychrobacter cryohalolentis K5T, we observed significant growth inhibition of the C41(DE3) cells in comparison with the same cells producing other recombinant proteins. Induction of AT877 synthesis also resulted in the elevated expression of a magnesium transporter MgtA and decreased ATP content of the cells. To characterize the response to overexpression of the autotransporter in bacterial cells, we performed a comparative analysis of their proteomic profile by mass spectrometry. According to the obtained data, E. coli cells which synthesize AT877 experience complex stress condition presumably associated with secretion apparatus overloading and improper localization of the recombinant protein. Several response pathways were shown to be activated by AT877 overproduction including Cpx, PhoP/PhoQ, Psp, and σE The obtained results open new opportunities for optimization of the recombinant membrane protein expression in E. coli for structural studies and biotechnological applications.


Assuntos
Adenosina Trifosfatases , Proteínas de Bactérias , Escherichia coli , Expressão Gênica , Proteínas de Membrana Transportadoras , Psychrobacter/genética , Adenosina Trifosfatases/biossíntese , Adenosina Trifosfatases/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...