Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(17)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37681914

RESUMO

The biguanide drug metformin is widely used in type 2 diabetes mellitus therapy, due to its ability to decrease serum glucose levels, mainly by reducing hepatic gluconeogenesis and glycogenolysis. A considerable number of studies have shown that metformin, besides its antidiabetic action, can improve other disease states, such as polycystic ovary disease, acute kidney injury, neurological disorders, cognitive impairment and renal damage. In addition, metformin is well known to suppress the growth and progression of different types of cancer cells both in vitro and in vivo. Accordingly, several epidemiological studies suggest that metformin is capable of lowering cancer risk and reducing the rate of cancer deaths among diabetic patients. The antitumoral effects of metformin have been proposed to be mainly mediated by the activation of the AMP-activated protein kinase (AMPK). However, a number of signaling pathways, both dependent and independent of AMPK activation, have been reported to be involved in metformin antitumoral action. Among these, the Wingless and Int signaling pathway have recently been included. Here, we will focus our attention on the main molecular mechanisms involved.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Neoplasias , Feminino , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Via de Sinalização Wnt , Proteínas Quinases Ativadas por AMP , Neoplasias/tratamento farmacológico
2.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830246

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia, responsible for the onset of several long-term complications. Recent evidence suggests that cognitive dysfunction represents an emerging complication of DM, but the underlying molecular mechanisms are still obscure. Dopamine (DA), a neurotransmitter essentially known for its relevance in the regulation of behavior and movement, modulates cognitive function, too. Interestingly, alterations of the dopaminergic system have been observed in DM. This review aims to offer a comprehensive overview of the most relevant experimental results assessing DA's role in cognitive function, highlighting the presence of dopaminergic dysfunction in DM and supporting a role for glucotoxicity in DM-associated dopaminergic dysfunction and cognitive impairment. Several studies confirm a role for DA in cognition both in animal models and in humans. Similarly, significant alterations of the dopaminergic system have been observed in animal models of experimental diabetes and in diabetic patients, too. Evidence is accumulating that advanced glycation end products (AGEs) and their precursor methylglyoxal (MGO) are associated with cognitive impairment and alterations of the dopaminergic system. Further research is needed to clarify the molecular mechanisms linking DM-associated dopaminergic dysfunction and cognitive impairment and to assess the deleterious impact of glucotoxicity.


Assuntos
Disfunção Cognitiva/metabolismo , Diabetes Mellitus/metabolismo , Dopamina/metabolismo , Glucose/toxicidade , Produtos Finais de Glicação Avançada/metabolismo , Hiperglicemia/metabolismo , Animais , Cognição/efeitos dos fármacos , Cognição/fisiologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/fisiopatologia , Complicações do Diabetes/metabolismo , Complicações do Diabetes/fisiopatologia , Diabetes Mellitus/fisiopatologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Glucose/metabolismo , Humanos , Hiperglicemia/complicações , Hiperglicemia/fisiopatologia , Aldeído Pirúvico/metabolismo , Transdução de Sinais
3.
Cells ; 10(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946426

RESUMO

Multiple lines of evidence suggest that metformin, an antidiabetic drug, exerts anti-tumorigenic effects in different types of cancer. Metformin has been reported to affect cancer cells' metabolism and proliferation mainly through the activation of AMP-activated protein kinase (AMPK). Here, we show that metformin inhibits, indeed, endometrial cancer cells' growth and induces apoptosis. More importantly, we report that metformin affects two important pro-survival pathways, such as the Unfolded Protein Response (UPR), following endoplasmic reticulum stress, and the WNT/ß-catenin pathway. GRP78, a key protein in the pro-survival arm of the UPR, was indeed downregulated, while GADD153/CHOP, a transcription factor that mediates the pro-apoptotic response of the UPR, was upregulated at both the mRNA and protein level. Furthermore, metformin dramatically inhibited ß-catenin mRNA and protein expression. This was paralleled by a reduction in ß-catenin transcriptional activity, since metformin inhibited the activity of a TCF/LEF-luciferase promoter. Intriguingly, compound C, a well-known inhibitor of AMPK, was unable to prevent all these effects, suggesting that metformin might inhibit endometrial cancer cells' growth and survival through the modulation of specific branches of the UPR and the inhibition of the Wnt/ß-catenin pathway in an AMPK-independent manner. Our findings may provide new insights on the mechanisms of action of metformin and refine the use of this drug in the treatment of endometrial cancer.


Assuntos
Carcinoma/metabolismo , Neoplasias do Endométrio/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Feminino , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas Quinases/metabolismo , Fator de Transcrição CHOP/metabolismo
4.
Nutrients ; 13(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924725

RESUMO

Non-alcoholic-fatty liver disease (NAFLD) is spreading worldwide. Specific drugs for NAFLD are not yet available, even if some plant extracts show beneficial properties. We evaluated the effects of a combination, composed by Berberis Aristata, Elaeis Guineensis and Coffea Canephora, on the development of obesity, hepatic steatosis, insulin-resistance and on the modulation of hepatic microRNAs (miRNA) levels and microbiota composition in a mouse model of liver damage. C57BL/6 mice were fed with standard diet (SD, n = 8), high fat diet (HFD, n = 8) or HFD plus plant extracts (HFD+E, n = 8) for 24 weeks. Liver expression of miR-122 and miR-34a was evaluated by quantitativePCR. Microbiome analysis was performed on cecal content by 16S rRNA sequencing. HFD+E-mice showed lower body weight (p < 0.01), amelioration of insulin-sensitivity (p = 0.021), total cholesterol (p = 0.014), low-density-lipoprotein-cholesterol (p < 0.001), alanine-aminotransferase (p = 0.038) and hepatic steatosis compared to HFD-mice. While a decrease of hepatic miR-122 and increase of miR-34a were observed in HFD-mice compared to SD-mice, both these miRNAs had similar levels to SD-mice in HFD+E-mice. Moreover, a different microbial composition was found between SD- and HFD-mice, with a partial rescue of dysbiosis in HFD+E-mice. This combination of plant extracts had a beneficial effect on HFD-induced NAFLD by the modulation of miR-122, miR-34a and gut microbiome.


Assuntos
Disbiose/tratamento farmacológico , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Arecaceae/química , Berberina/administração & dosagem , Berberis/química , Coffea/química , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Disbiose/imunologia , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Resistência à Insulina/imunologia , Fígado/patologia , Masculino , Camundongos , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Extratos Vegetais/química , Tocotrienóis/administração & dosagem
5.
FASEB J ; 35(4): e21357, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710685

RESUMO

First-degree relatives (FDRs) of type 2 diabetics (T2D) feature dysfunction of subcutaneous adipose tissue (SAT) long before T2D onset. miRNAs have a role in adipocyte precursor cells (APC) differentiation and in adipocyte identity. Thus, impaired miRNA expression may contribute to SAT dysfunction in FDRs. In the present work, we have explored changes in miRNA expression associated with T2D family history which may affect gene expression in SAT APCs from FDRs. Small RNA-seq was performed in APCs from healthy FDRs and matched controls and omics data were validated by qPCR. Integrative analyses of APC miRNome and transcriptome from FDRs revealed down-regulated hsa-miR-23a-5p, -193a-5p and -193b-5p accompanied by up-regulated Insulin-like Growth Factor 2 (IGF2) gene which proved to be their direct target. The expression changes in these marks were associated with SAT adipocyte hypertrophy in FDRs. APCs from FDRs further demonstrated reduced capability to differentiate into adipocytes. Treatment with IGF2 protein decreased APC adipogenesis, while over-expression of hsa-miR-23a-5p, -193a-5p and -193b-5p enhanced adipogenesis by IGF2 targeting. Indeed, IGF2 increased the Wnt Family Member 10B gene expression in APCs. Down-regulation of the three miRNAs and IGF2 up-regulation was also observed in Peripheral Blood Leukocytes (PBLs) from FDRs. In conclusion, APCs from FDRs feature a specific miRNA/gene profile, which associates with SAT adipocyte hypertrophy and appears to contribute to impaired adipogenesis. PBL detection of this profile may help in identifying adipocyte hypertrophy in individuals at high risk of T2D.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Predisposição Genética para Doença , Fator de Crescimento Insulin-Like II/metabolismo , MicroRNAs/metabolismo , Adipogenia , Clonagem Molecular , Diabetes Mellitus Tipo 2/genética , Família , Regulação da Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like II/genética , MicroRNAs/genética
6.
Front Endocrinol (Lausanne) ; 11: 588685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240221

RESUMO

The endoplasmic reticulum stress and the unfolded protein response are triggered following an imbalance between protein load and protein folding. Until recently, two possible outcomes of the unfolded protein response have been considered: life or death. We sought to substantiate a third alternative, dedifferentiation, mesenchymal shift, and activation of the antioxidant response by using typical endocrine cells, i.e. thyroid cells. The thyroid is a unique system both of endoplasmic reticulum stress (a single protein, thyroglobulin represents the majority of proteins synthesized in the endoplasmic reticulum by the thyrocyte) and of polarized epithelium (the single layer of thyrocytes delimiting the follicle). Following endoplasmic reticulum stress, in thyroid cells the folding of thyroglobulin was disrupted. The mRNAs of unfolded protein response were induced or spliced (X-box binding protein-1). Differentiation was inhibited: mRNA levels of thyroid specific genes, and of thyroid transcription factors were dramatically downregulated, at least in part, transcriptionally. The dedifferentiating response was accompanied by an upregulation of mRNAs of antioxidant genes. Moreover, cadherin-1, and the thyroid (and kidney)-specific cadherin-16 mRNAs were downregulated, vimentin, and SNAI1 mRNAs were upregulated. In addition, loss of cortical actin and stress fibers formation were observed. Together, these data indicate that ER stress in thyroid cells induces dedifferentiation, loss of epithelial organization, shift towards a mesenchymal phenotype, and activation of the antioxidant response, highlighting, at the same time, a new and wide strategy to achieve survival following ER stress, and, as a sort of the other side of the coin, a possible new molecular mechanism of decline/loss of function leading to a deficit of thyroid hormones formation.


Assuntos
Antioxidantes/metabolismo , Diferenciação Celular , Estresse do Retículo Endoplasmático , Mesoderma/citologia , Tireoglobulina/metabolismo , Células Epiteliais da Tireoide/citologia , Resposta a Proteínas não Dobradas , Animais , Células Cultivadas , Regulação da Expressão Gênica , Mesoderma/metabolismo , Ratos , Células Epiteliais da Tireoide/metabolismo
7.
Epigenomics ; 12(10): 873-888, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32483983

RESUMO

Aim: First-degree relatives (FDR) of individuals with Type 2 diabetes (T2D) feature restricted adipogenesis, which render them more vulnerable to T2D. Epigenetics may contribute to these abnormalities. Methods: FDR pre-adipocyte Methylome and Transcriptome were investigated by MeDIP- and RNA-Seq, respectively. Results:Methylome analysis revealed 2841 differentially methylated regions (DMR) in FDR. Most DMR localized into gene-body and were hypomethylated. The strongest hypomethylation signal was identified in an intronic-DMR at the PTPRD gene. PTPRD hypomethylation in FDR was confirmed by bisulphite sequencing and was responsible for its upregulation. Interestingly, Ptprd-overexpression in 3T3-L1 pre-adipocytes inhibited adipogenesis. Notably, the validated PTPRD-associated DMR was significantly hypomethylated in peripheral blood leukocytes from the same FDR individuals. Finally, PTPRD methylation pattern was also replicated in obese individuals. Conclusion: Our findings indicated a previously unrecognized role of PTPRD in restraining adipogenesis. This abnormality may contribute to increase FDR proclivity toward T2D.


Assuntos
Adipogenia/genética , Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Células 3T3-L1 , Adulto , Animais , Epigênese Genética , Feminino , Humanos , Masculino , Camundongos
8.
Cells ; 8(7)2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331077

RESUMO

Dicarbonyl stress occurs when dicarbonyl metabolites (i.e., methylglyoxal, glyoxal and 3-deoxyglucosone) accumulate as a consequence of their increased production and/or decreased detoxification. This toxic condition has been associated with metabolic and age-related diseases, both of which are characterized by a pro-inflammatory and pro-oxidant state. Methylglyoxal (MGO) is the most reactive dicarbonyl and the one with the highest endogenous flux. It is the precursor of the major quantitative advanced glycated products (AGEs) in physiological systems, arginine-derived hydroimidazolones, which accumulate in aging and dysfunctional tissues. The aging process is characterized by a decline in the functional properties of cells, tissues and whole organs, starting from the perturbation of crucial cellular processes, including mitochondrial function, proteostasis and stress-scavenging systems. Increasing studies are corroborating the causal relationship between MGO-derived AGEs and age-related tissue dysfunction, unveiling a previously underestimated role of dicarbonyl stress in determining healthy or unhealthy aging. This review summarizes the latest evidence supporting a causal role of dicarbonyl stress in age-related diseases, including diabetes mellitus, cardiovascular disease and neurodegeneration.


Assuntos
Envelhecimento/metabolismo , Doenças Cardiovasculares/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Envelhecimento Saudável/metabolismo , Doenças Metabólicas/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Aldeído Pirúvico/metabolismo , Envelhecimento/patologia , Animais , Células Cultivadas , Senescência Celular , Humanos , Camundongos , Ratos
9.
Int J Mol Sci ; 20(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248068

RESUMO

A healthy diet improves life expectancy and helps to prevent common chronic diseases such as type 2 diabetes (T2D) and obesity. The mechanisms driving these effects are not fully understood, but are likely to involve epigenetics. Epigenetic mechanisms control gene expression, maintaining the DNA sequence, and therefore the full genomic information inherited from our parents, unchanged. An interesting feature of epigenetic changes lies in their dynamic nature and reversibility. Accordingly, they are susceptible to correction through targeted interventions. Here we will review the evidence supporting a role for nutritional factors in mediating metabolic disease risk through DNA methylation changes. Special emphasis will be placed on the potential of using DNA methylation traits as biomarkers to predict risk of obesity and T2D as well as on their response to dietary and pharmacological (epi-drug) interventions.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 2/etiologia , Dieta , Suscetibilidade a Doenças , Obesidade/etiologia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Epigênese Genética , Humanos , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Medição de Risco , Fatores de Risco
10.
J Cell Physiol ; 234(7): 11861-11870, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30536670

RESUMO

Tyrosine hydroxylase (TH), catalyzing the conversion of tyrosine into l-DOPA, is the rate-limiting enzyme in dopamine synthesis. Defects in insulin action contribute to alterations of TH expression and/or activity in the brain and insulin increases TH levels in 1-methyl-4-phenylpyridinium (MPP+)-treated neuronal cells. However, the molecular mechanisms underlying the regulation of TH by insulin have not been elucidated yet. Using PC12 cells, we show for the first time that insulin increases TH expression in a biphasic manner, with a transient peak at 2 hr and a delayed response at 16 hr, which persists for up to 24 hr. The use of a dominant negative hypoxia-inducible factor 1-alpha (HIF-1α) and its pharmacological inhibitor chetomin, together with chromatin immunoprecipitation (ChIP) experiments for the specific binding to TH promoter, demonstrate the direct role of HIF-1α in the early phase. Moreover, ChIP experiments and transfection of a dominant negative of the nerve growth factor IB (Nur77) indicate the involvement of Nur77 in the late phase insulin response, which is mediated by HIF-1α. In conclusion, the present study shows that insulin regulates TH expression through HIF-1α and Nur77 in PC12 cells, supporting the critical role of insulin signaling in maintaining an appropriate dopaminergic tone by regulating TH expression in the central nervous system.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Insulina/farmacologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Tirosina 3-Mono-Oxigenase/efeitos dos fármacos , Animais , Hipóxia Celular/fisiologia , Dopamina/metabolismo , Insulina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Ratos , Ativação Transcricional/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Regulação para Cima
11.
J Cell Physiol ; 233(9): 7367-7378, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29663374

RESUMO

Prostate cancer (PCa) is the most commonly diagnosed malignancy in men and the second leading cause of cancer-related death in industrialized countries. Epidemiologic evidence suggests that obesity promotes aggressive PCa. Recently, a family of Free Fatty Acid (FFA) receptors (FFARs) has been identified and reported to affect several crucial biological functions of tumor cells such as proliferation, invasiveness, and apoptosis. Here we report that oleic acid (OA), one of the most prevalent FFA in human plasma, increases proliferation of highly malignant PC3 and DU-145 PCa cells. Furthermore, docetaxel cytotoxic action, the first-line chemotherapeutic agent for the treatment of androgen-independent PCa, was significantly reduced in the presence of OA, when measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, suggesting that this FFA plays also a role in chemoresistance. OA induced intracellular calcium increase, in part due to the store operated calcium entry (SOCE), measured by a calcium imaging technique. Moreover, PI3K/Akt signaling pathway was enhanced, as revealed by increased Akt phosphorylation levels. Intriguingly, attenuating the expression of FFA1/GPR40, a receptor for long chain FFA including OA, prevented the OA-induced effects. Of relevance, we found that FFA1/GPR40 is significantly overexpressed in tissue specimens of PCa, compared to benign prostatic hyperplasia tissues, at both mRNA and protein expression level, analyzed by Real Time RT-PCR and immunofluorescence experiments, respectively. Our data suggest that OA promotes an aggressive phenotype in PCa cells via FFA1/GPR40, calcium and PI3K/Akt signaling. Thus, FFA1/GPR40, might represent a potential useful prognostic biomarker and therapeutic target for the treatment of advanced PCa.


Assuntos
Ácido Oleico/farmacologia , Neoplasias da Próstata/patologia , Receptores Acoplados a Proteínas G/metabolismo , Idoso , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Docetaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-29535681

RESUMO

Glucose serves as a primary, and for some tissues the unique, fuel source in order to generate and maintain the biological functions. Hyperglycemia is a hallmark of type 2 diabetes and is the direct consequence of perturbations in the glucose homeostasis. Insulin resistance, referred to as a reduced response of target tissues to the hormone, contributes to the development of hyperglycemia. The molecular mechanisms responsible for the altered glucose homeostasis are numerous and not completely understood. MicroRNAs (miRNAs) are now recognized as regulators of the lipid and glucose metabolism and are involved in the onset of metabolic diseases. Indeed, these small non-coding RNA molecules operate in the RNA silencing and posttranscriptional regulation of gene expression and may modulate the levels of kinases and enzymes in the glucose metabolism. Therefore, a better characterization of the function of miRNAs and a deeper understanding of their role in disease may represent a fundamental step toward innovative treatments addressing the causes, not only the symptoms, of hyperglycemia, using approaches aimed at restoring either miRNAs or their specific targets. In this review, we outline the current understanding regarding the impact of miRNAs in the glucose metabolism and highlight the need for further research focused on altered key kinases and enzymes in metabolic diseases.

13.
Int J Mol Sci ; 19(2)2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29425121

RESUMO

Evidence has been provided linking microRNAs (miRNAs) and diabetic complications, by the regulation of molecular pathways, including insulin-signaling, involved in the pathophysiology of vascular dysfunction. Methylglyoxal (MGO) accumulates in diabetes and is associated with cardiovascular complications. This study aims to analyze the contribution of miRNAs in the MGO-induced damaging effect on insulin responsiveness in mouse aortic endothelial cells (MAECs). miRNA modulation was performed by transfection of specific miRNA mimics and inhibitors in MAECs, treated or not with MGO. miRNA-target protein levels were evaluated by Western blot. PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) regulation by miR-214 was tested by luciferase assays and by the use of a target protector specific for miR-214 on PHLPP2-3'UTR. This study reveals a 4-fold increase of PHLPP2 in MGO-treated MAECs. PHLPP2 levels inversely correlate with miR-214 modulation. Moreover, miR-214 overexpression is able to reduce PHLPP2 levels in MGO-treated MAECs. Interestingly, a direct regulation of PHLPP2 is proved to be dependent by miR-214. Finally, the inhibition of miR-214 impairs the insulin-dependent Akt activation, while its overexpression rescues the insulin effect on Akt activation in MGO-treated MAECs. In conclusion, this study shows that PHLPP2 is a target of miR-214 in MAECs, and identifies miR-214 downregulation as a contributing factor to MGO-induced endothelial insulin-resistance.


Assuntos
Endotélio Vascular/metabolismo , Fosfoproteínas Fosfatases/genética , Animais , Aorta/citologia , Aorta/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Insulina/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Aldeído Pirúvico/toxicidade , Transdução de Sinais
14.
Diabetologia ; 61(2): 369-380, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29067487

RESUMO

AIMS/HYPOTHESIS: Subcutaneous adipocyte hypertrophy is associated with insulin resistance and increased risk of type 2 diabetes, and predicts its future development independent of obesity. In humans, subcutaneous adipose tissue hypertrophy is a consequence of impaired adipocyte precursor cell recruitment into the adipogenic pathway rather than a lack of precursor cells. The zinc finger transcription factor known as zinc finger protein (ZFP) 423 has been identified as a major determinant of pre-adipocyte commitment and maintained white adipose cell function. Although its levels do not change during adipogenesis, ectopic expression of Zfp423 in non-adipogenic murine cells is sufficient to activate expression of the gene encoding peroxisome proliferator-activated receptor γ (Pparγ; also known as Pparg) and increase the adipogenic potential of these cells. We investigated whether the Zfp423 gene is under epigenetic regulation and whether this plays a role in the restricted adipogenesis associated with hypertrophic obesity. METHODS: Murine 3T3-L1 and NIH-3T3 cells were used as fibroblasts committed and uncommitted to the adipocyte lineage, respectively. Human pre-adipocytes were isolated from the stromal vascular fraction of subcutaneous adipose tissue of 20 lean non-diabetic individuals with a wide adipose cell size range. mRNA levels were measured by quantitative real-time PCR, while methylation levels were analysed by bisulphite sequencing. Chromatin structure was analysed by micrococcal nuclease protection assay, and DNA-methyltransferases were chemically inhibited by 5-azacytidine. Adipocyte differentiation rate was evaluated by Oil Red O staining. RESULTS: Comparison of uncommitted (NIH-3T3) and committed (3T3-L1) adipose precursor cells revealed that Zfp423 expression increased (p < 0.01) in parallel with the ability of the cells to differentiate into mature adipocytes owing to both decreased promoter DNA methylation (p < 0.001) and nucleosome occupancy (nucleosome [NUC] 1 p < 0.01; NUC2 p < 0.001) in the 3T3-L1 compared with NIH-3T3 cells. Interestingly, non-adipogenic epigenetic profiles can be reverted in NIH-3T3 cells as 5-azacytidine treatment increased Zfp423 mRNA levels (p < 0.01), reduced DNA methylation at a specific CpG site (p < 0.01), decreased nucleosome occupancy (NUC1, NUC2: p < 0.001) and induced adipocyte differentiation (p < 0.05). These epigenetic modifications can also be initiated in response to changes in the pre-adipose cell microenvironment, in which bone morphogenetic protein 4 (BMP4) plays a key role. We finally showed that, in human adipocyte precursor cells, impaired epigenetic regulation of zinc nuclear factor (ZNF)423 (the human orthologue of murine Zfp423) was associated with inappropriate subcutaneous adipose cell hypertrophy. As in NIH-3T3 cells, the normal ZNF423 epigenetic profile was rescued by 5-azacytidine exposure. CONCLUSIONS/INTERPRETATION: Our results show that epigenetic events regulate the ability of precursor cells to commit and differentiate into mature adipocytes by modulating ZNF423, and indicate that dysregulation of these mechanisms accompanies subcutaneous adipose tissue hypertrophy in humans.


Assuntos
Adipogenia/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/genética , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Metilação de DNA/genética , Metilação de DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/genética , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Células NIH 3T3 , Obesidade/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Sci Rep ; 7: 43526, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266632

RESUMO

Epigenetic modifications alter transcriptional activity and contribute to the effects of environment on the individual risk of obesity and Type 2 Diabetes (T2D). Here, we have estimated the in vivo effect of a fat-enriched diet (HFD) on the expression and the epigenetic regulation of the Ankyrin repeat domain 26 (Ankrd26) gene, which is associated with the onset of these disorders. In visceral adipose tissue (VAT), HFD exposure determined a specific hyper-methylation of Ankrd26 promoter at the -436 and -431 bp CpG sites (CpGs) and impaired its expression. Methylation of these 2 CpGs impaired binding of the histone acetyltransferase/transcriptional coactivator p300 to this same region, causing hypo-acetylation of histone H4 at the Ankrd26 promoter and loss of binding of RNA Pol II at the Ankrd26 Transcription Start Site (TSS). In addition, HFD increased binding of DNA methyl-transferases (DNMTs) 3a and 3b and methyl-CpG-binding domain protein 2 (MBD2) to the Ankrd26 promoter. More importantly, Ankrd26 down-regulation enhanced secretion of pro-inflammatory mediators by 3T3-L1 adipocytes as well as in human sera. Thus, in mice, the exposure to HFD induces epigenetic silencing of the Ankrd26 gene, which contributes to the adipose tissue inflammatory secretion profile induced by high-fat regimens.


Assuntos
Tecido Adiposo Branco/metabolismo , Ilhas de CpG , Metilação de DNA , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Obesidade/etiologia , Obesidade/metabolismo , Fatores de Transcrição/genética , Acetilação , Adipócitos/metabolismo , Animais , Citocinas/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Dieta Hiperlipídica , Modelos Animais de Doenças , Inativação Gênica , Histonas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/metabolismo , Ativação Transcricional , Fatores de Transcrição de p300-CBP/metabolismo
16.
J Cell Physiol ; 232(12): 3735-3743, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28177128

RESUMO

Endometrial cancer is often characterized by PI3K/AKT pathway deregulation. Recently it has been suggested that SGK1, a serine/threonine protein kinase that shares structural and functional similarities with the AKT family, might play a role in cancer, since its expression and/or activity has been found to be deregulated in different human tumors. However, the role of SGK1 in endometrial cancer has been poorly investigated. Here, we show that SGK1 expression is increased in tissue specimens from neoplastic endometrium. The SGK1 inhibitor SI113 induced a significant reduction of endometrial cancer cells viability, measured by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. This effect was associated to the increase of autophagy, as revealed by the increase of the markers LC3B-II and beclin I, detected by both immunofluorescence and western blot analysis. SI113 treatment caused also apoptosis of endometrial cancer cells, evidenced by the cleavage of the apoptotic markers PARP and Caspase-9. Intriguingly, these effects were associated to the induction of endoplasmic reticulum stress markers GRP78 and CHOP evaluated by both Real-Time RT-PCR and Western Blot analysis. Increased expression of SGK1 in endometrial cancer tissues suggest a role for SGK1 in this type of cancer, as reported for other malignancies. Moreover, the efficacy of SI113 in affecting endometrial cancer cells viability, possibly via endoplasmic reticulum stress activation, identifies SGK1 as an attractive molecular target for new tailored therapeutic intervention for the treatment of endometrial cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias do Endométrio/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteína Beclina-1/metabolismo , Estudos de Casos e Controles , Caspase 9/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Neoplasias do Endométrio/enzimologia , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Chaperona BiP do Retículo Endoplasmático , Feminino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas Imediatamente Precoces/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
17.
Int J Mol Sci ; 18(1)2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28106778

RESUMO

The highly reactive dicarbonyl methylglyoxal (MGO) is mainly formed as byproduct of glycolysis. Therefore, high blood glucose levels determine increased MGO accumulation. Nonetheless, MGO levels are also increased as consequence of the ineffective action of its main detoxification pathway, the glyoxalase system, of which glyoxalase 1 (Glo1) is the rate-limiting enzyme. Indeed, a physiological decrease of Glo1 transcription and activity occurs not only in chronic hyperglycaemia but also with ageing, during which MGO accumulation occurs. MGO and its advanced glycated end products (AGEs) are associated with age-related diseases including diabetes, vascular dysfunction and neurodegeneration. Endothelial dysfunction is the first step in the initiation, progression and clinical outcome of vascular complications, such as retinopathy, nephropathy, impaired wound healing and macroangiopathy. Because of these considerations, studies have been centered on understanding the molecular basis of endothelial dysfunction in diabetes, unveiling a central role of MGO-Glo1 imbalance in the onset of vascular complications. This review focuses on the current understanding of MGO accumulation and Glo1 activity in diabetes, and their contribution on the impairment of endothelial function leading to diabetes-associated vascular damage.


Assuntos
Lactoilglutationa Liase/metabolismo , Doenças Vasculares/enzimologia , Animais , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Humanos , Resistência à Insulina , Modelos Biológicos , Aldeído Pirúvico/metabolismo
18.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 440-449, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27864140

RESUMO

Methylglyoxal (MGO) is a reactive dicarbonyl produced as by-product of glycolysis, and its formation is heightened in hyperglycaemia. MGO plasma levels are two-fold to five-fold increased in diabetics and its accumulation promotes the progression of vascular complications. Impairment of endothelium-derived nitric oxide represents a common feature of endothelial dysfunction in diabetics. We previously demonstrated that MGO induces endothelial insulin resistance. Increasing evidence shows that high glucose and MGO modify vascular expression of several microRNAs (miRNAs), suggesting their potential role in the impairment of endothelial insulin sensitivity. The aim of the study is to investigate whether miRNAs may be involved in MGO-induced endothelial insulin resistance in endothelial cells. MGO reduces the expression of miR-190a both in mouse aortic endothelial cells (MAECs) and in aortae from mice knocked-down for glyoxalase-1. miR-190a inhibition impairs insulin sensitivity, whereas its overexpression prevents the MGO-induced insulin resistance in MAECs. miR-190a levels are not affected by the inhibition of ERK1/2 phosphorylation. Conversely, ERK1/2 activation is sustained by miR-190a inhibitor and the MGO-induced ERK1/2 hyper-activation is reduced by miR-190a mimic transfection. Similarly, protein levels of the upstream KRAS are increased by both MGO and miR-190a inhibitor, and these levels are reduced by miR-190a mimic transfection. Interestingly, silencing of KRAS is able to rescue the MGO-impaired activation of IRS1/Akt/eNOS pathway in response to insulin. In conclusion, miR-190a down-regulation plays a role in MGO-induced endothelial insulin resistance by increasing KRAS. This study highlights miR-190a as new candidate for the identification of strategies aiming at ameliorating vascular function in diabetes.


Assuntos
Regulação para Baixo , Células Endoteliais/metabolismo , Resistência à Insulina , Insulina/metabolismo , MicroRNAs/genética , Aldeído Pirúvico/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus/metabolismo , Glicólise , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
19.
Epigenomics ; 7(4): 653-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26111035

RESUMO

miRNAs have emerged as key epigenetic regulators of metabolism. Their deregulation contributes to metabolic abnormalities, proposing their potential role as therapeutic targets for Type 2 diabetes. The exciting finding that miRNAs exist in the bloodstream suggests that circulating miRNAs may act in a hormone-like fashion. Despite the fact that significant progress has been made in understanding circulating miRNAs, this topic is full of complexities and many questions remain unanswered. The goal of this review is to bring together up-to-date knowledge about circulating miRNAs and their role as intercellular communicators as well as potential biomarkers and therapeutic targets in metabolic diseases, providing examples of possible clinical applications for circulating miRNAs in diabetes and cardiovascular complications.


Assuntos
Diabetes Mellitus Tipo 2/genética , MicroRNAs/genética , Animais , Biomarcadores/sangue , Comunicação Celular , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/terapia , Humanos , MicroRNAs/sangue , Sistemas do Segundo Mensageiro
20.
Fertil Steril ; 103(6): 1579-86.e1, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25935494

RESUMO

OBJECTIVE: To investigate immunologic parameters and endoplasmic reticulum (ER) stress associated with unexplained infertility. DESIGN: Case-control study. SETTING: Academic center. PATIENT(S): Women with no fertility problems (FS) (n = 13), women with recurrent miscarriage (RM) (n = 15) and women with repeated in vitro fertilization failure (RIF) (n = 15). INTERVENTION(S): Endometrial biopsy and collection of peripheral blood during the midsecretory phase of menstrual cycle. MAIN OUTCOME MEASURE(S): Leptin, resistin, soluble tumor necrosis factor receptor (sTNF-R), myeloperoxidase (MPO), soluble intercellular adhesion molecule 1 (sICAM-1), and interleukin 22 (IL-22) concentration in peripheral blood, endometrial CD3(+), CD4(+), CD5(+), CD8(+), and FoxP3(+) T lymphocytes, and endometrial expression of HSPA5, a specific marker of ER stress. RESULT(S): We found an increase of proinflammatory molecules such as resistin, leptin, and IL-22 in both RM and RIF patients; sTNF-R and MPO only in RIF patients when compared with the FS women. We also found in endometria of infertile women a statistically significant increase of CD3(+), CD4(+), CD8(+) in both RM and RIF patients and CD5(+) in RM patients when compared with FS women. This was paralleled by a statistically significant reduction of infiltrating FoxP3(+) regulatory T cells. Finally, endometrial HSPA5 expression levels were statistically significantly up-regulated in both RM and RIF patients. CONCLUSION(S): Women with RM and RIF showed an increase of circulating proinflammatory cytokines, altered endometrial T lymphocytes subsets, and signs of endometrial ER stress.


Assuntos
Implantação do Embrião/imunologia , Retículo Endoplasmático/imunologia , Infertilidade Feminina/imunologia , Inflamação/imunologia , Estresse Oxidativo/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Adulto , Estudos de Casos e Controles , Retículo Endoplasmático/patologia , Chaperona BiP do Retículo Endoplasmático , Feminino , Humanos , Infertilidade Feminina/patologia , Inflamação/patologia , Ciclo Menstrual/imunologia , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...