Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Ambio ; 52(11): 1819-1831, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37725249

RESUMO

Integrated long-term, in-situ observations are needed to document ongoing environmental change, to "ground-truth" remote sensing and model outputs and to predict future Earth system behaviour. The scientific and societal value of in-situ observations increases with site representativeness, temporal duration, number of parameters measured and comparability within and across sites. Research Infrastructures (RIs) can support harmonised, cross-site data collection, curation and publication. Integrating RI networks through site co-location and standardised observation methods can help answers three questions about the terrestrial carbon sink: (i) What are present and future carbon sequestration rates in northern European forests? (ii) How are these rates controlled? (iii) Why do the observed patterns exist? Here, we present a conceptual model for RI co-location and highlight potential insights into the terrestrial carbon sink achievable when long-term in-situ Earth observation sites participate in multiple RI networks (e.g., ICOS and eLTER). Finally, we offer recommendations to promote RI co-location.

3.
Ecol Indic ; 127: 107785, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34345225

RESUMO

The challenges posed by climate and land use change are increasingly complex, with rising and accelerating impacts on the global environmental system. Novel environmental and ecosystem research needs to properly interpret system changes and derive management recommendations across scales. This largely depends on advances in the establishment of an internationally harmonised, long-term operating and representative infrastructure for environmental observation. This paper presents an analysis evaluating 743 formally accredited sites of the International Long-Term Ecological Research (ILTER) network in 47 countries with regard to their spatial distribution and related biogeographical and socio-ecological representativeness. "Representedness" values were computed from six global datasets. The analysis revealed a dense coverage of Northern temperate regions and anthropogenic zones most notably in the US, Europe and East Asia. Significant gaps are present in economically less developed and anthropogenically less impacted hot and barren regions like Northern and Central Africa and inner-continental parts of South America. These findings provide the arguments for our recommendations regarding the geographic expansion for the further development of the ILTER network.

4.
Sci Total Environ ; 613-614: 1376-1384, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29898505

RESUMO

Global change effects on biodiversity and human wellbeing call for improved long-term environmental data as a basis for science, policy and decision making, including increased interoperability, multifunctionality, and harmonization. Based on the example of two global initiatives, the International Long-Term Ecological Research (ILTER) network and the Group on Earth Observations Biodiversity Observation Network (GEO BON), we propose merging the frameworks behind these initiatives, namely ecosystem integrity and essential biodiversity variables, to serve as an improved guideline for future site-based long-term research and monitoring in terrestrial, freshwater and coastal ecosystems. We derive a list of specific recommendations of what and how to measure at a monitoring site and call for an integration of sites into co-located site networks across individual monitoring initiatives, and centered on ecosystems. This facilitates the generation of linked comprehensive ecosystem monitoring data, supports synergies in the use of costly infrastructures, fosters cross-initiative research and provides a template for collaboration beyond the ILTER and GEO BON communities.


Assuntos
Biodiversidade , Ecossistema , Monitoramento Ambiental/métodos , Política Ambiental , Tomada de Decisões , Monitoramento Ambiental/estatística & dados numéricos
5.
Sci Total Environ ; 624: 968-978, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29275260

RESUMO

The challenges posed by climate and land use change are increasingly complex, with ever-increasing and accelerating impacts on the global environmental system. The establishment of an internationally harmonized, integrated, and long-term operated environmental monitoring infrastructure is one of the major challenges of modern environmental research. Increased efforts are currently being made in Europe to establish such a harmonized pan-European observation infrastructure, and the European network of Long-Term Ecological Research sites - LTER-Europe - is of particular importance. By evaluating 477 formally accredited LTER-Europe sites, this study gives an overview of the current distribution of these infrastructures and the present condition of long-term environmental research in Europe. We compiled information on long-term biotic and abiotic observations and measurements and examined the representativeness in terms of continental biogeographical and socio-ecological gradients. The results were used to identify gaps in both measurements and coverage of the aforementioned gradients. Furthermore, an overview of the current state of the LTER-Europe observation strategies is given. The latter forms the basis for investigating the comparability of existing LTER-Europe monitoring concepts both in terms of observational design as well as in terms of the scope of the environmental compartments, variables and properties covered.


Assuntos
Ecologia , Monitoramento Ambiental , Pesquisa , Clima , Ecossistema , Europa (Continente)
6.
Ecol Evol ; 7(7): 2155-2168, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28405280

RESUMO

Human-induced changes of the environment and their possible impacts on temperate forest understory plant communities have been examined in many studies. However, the relative contribution of individual environmental factors to these changes in the herb layer is still unclear. In this study, we used vegetation survey data covering a time period of 21 years and collected from 143 permanent plots in the Northern Limestone Alps, Austria. Data on soil chemistry (49 plots), light condition (51 plots), soil temperature and moisture (four and six plots), disturbance (all plots), climate (one station in a clearing area), and airborne sulfur (S) and nitrogen (N) deposition (two forest stands) were available for analyses. We used these data together with plot mean Ellenberg indicator values in a path analysis to attribute their relative contributions to observed vegetation changes. Our analysis reveals a strong directional shift of the forest understory plant community. We found strong evidence for a recovery of the ground-layer vegetation from acidification as response to decreased S deposition. We did not observe a community response to atmospheric N deposition, but we found a response to altered climatic conditions (thermophilization and drying). The path analysis revealed that changes in the light regime, which were related to small-scale disturbances, had most influence on herb layer community shifts. Thermophilization and drying were identified as drivers of understory community changes independent of disturbance events.

7.
Glob Chang Biol ; 21(10): 3726-37, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26212787

RESUMO

Global biodiversity is affected by numerous environmental drivers. Yet, the extent to which global environmental changes contribute to changes in local diversity is poorly understood. We investigated biodiversity changes in a meta-analysis of 39 resurvey studies in European temperate forests (3988 vegetation records in total, 17-75 years between the two surveys) by assessing the importance of (i) coarse-resolution (i.e., among sites) vs. fine-resolution (i.e., within sites) environmental differences and (ii) changing environmental conditions between surveys. Our results clarify the mechanisms underlying the direction and magnitude of local-scale biodiversity changes. While not detecting any net local diversity loss, we observed considerable among-site variation, partly explained by temporal changes in light availability (a local driver) and density of large herbivores (a regional driver). Furthermore, strong evidence was found that presurvey levels of nitrogen deposition determined subsequent diversity changes. We conclude that models forecasting future biodiversity changes should consider coarse-resolution environmental changes, account for differences in baseline environmental conditions and for local changes in fine-resolution environmental conditions.


Assuntos
Poluição do Ar/efeitos adversos , Biodiversidade , Clima , Agricultura Florestal , Florestas , Herbivoria , Europa (Continente) , Fatores de Tempo
8.
Glob Chang Biol ; 20(2): 429-40, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24132996

RESUMO

Chronic nitrogen (N) deposition is a threat to biodiversity that results from the eutrophication of ecosystems. We studied long-term monitoring data from 28 forest sites with a total of 1,335 permanent forest floor vegetation plots from northern Fennoscandia to southern Italy to analyse temporal trends in vascular plant species cover and diversity. We found that the cover of plant species which prefer nutrient-poor soils (oligotrophic species) decreased the more the measured N deposition exceeded the empirical critical load (CL) for eutrophication effects (P = 0.002). Although species preferring nutrient-rich sites (eutrophic species) did not experience a significantly increase in cover (P = 0.440), in comparison to oligotrophic species they had a marginally higher proportion among new occurring species (P = 0.091). The observed gradual replacement of oligotrophic species by eutrophic species as a response to N deposition seems to be a general pattern, as it was consistent on the European scale. Contrary to species cover changes, neither the decrease in species richness nor of homogeneity correlated with nitrogen CL exceedance (ExCLemp N). We assume that the lack of diversity changes resulted from the restricted time period of our observations. Although existing habitat-specific empirical CL still hold some uncertainty, we exemplify that they are useful indicators for the sensitivity of forest floor vegetation to N deposition.


Assuntos
Biodiversidade , Ecossistema , Eutrofização , Nitrogênio/metabolismo , Fenômenos Fisiológicos Vegetais , Europa (Continente)
9.
Environ Pollut ; 158(3): 849-54, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19879680

RESUMO

Anthropogenic trace element emissions have declined. However, top soils all over the world remain enriched in trace elements. We investigated Pb and Cd migration in forest soils of a remote monitoring site in the Austrian limestone Alps between 1992 and 2004. Large spatial variability masked temporal changes in the mineral soil of Lithic Leptosols (Skeltic), whereas a significant reduction of Pb concentrations in their forest floors occurred. Reductions of concentrations in the less heterogeneous Cambisols (Chromic) were significant. In contrast, virtually no migration of Pb and Cd were found in Stagnosols due to their impeded drainage. Very low element concentrations (<1 microg l(-1)) in field-collected soil solutions using tension lysimeters (0.2 microm nylon filters) imply that migration largely occurred by preferential flow as particulate-bound species during intensive rainfall events. Our results indicate that the extent of Pb and Cd migration in soils is largely influenced by soil type.


Assuntos
Poluentes Atmosféricos/análise , Cádmio/análise , Monitoramento Ambiental , Chumbo/análise , Poluentes do Solo/análise , Solo/análise , Áustria , Fagus , Picea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...