Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(12): e2109170, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35076132

RESUMO

Nano-enabled, bio-based, functional materials are key for the transition to a sustainable society as they can be used, owing to both their performance and nontoxicity, to gradually replace existing nonrenewable engineering materials. Cellulose nanocrystals (CNCs), produced by acid hydrolysis of cellulosic biomass, have been shown to possess distinct self-assembly, optical, and electromechanical properties, and are anticipated to play an important role in the fabrication of photonic, optoelectronic, and functional hybrid materials. To facilitate CNCs' technological viability, a method suitable for industrial exploitation is developed to produce photonic films possessing long-range chirality on conductive, rigid, or flexible, substrates within a few minutes. The approach is based on electrophoretic deposition (EPD)-induced self-assembly of CNCs, where photonic films of any size can be produced by controlling CNC surface properties and EPD parameters. CNC film coloration can be determined by the CNC aqueous suspension characteristics, while their reflected intensity can be tuned by changing the duration and number of electrodeposition cycles. EPD-induced self-assembly of CNCs is compatible with in situ reduction of gold precursors without the need to use additional reducing agents (some of which are considered toxic), thereby allowing the preparation of hybrid photonic films with tunable plasmonic response in a one-pot process.

2.
J Colloid Interface Sci ; 608(Pt 3): 2820-2829, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34802766

RESUMO

HYPOTHESIS: High and medium internal phase Pickering emulsions stabilized with cellulose nanocrystals (CNCs) exhibited very different performance compared to their peers stabilized with a surfactant. In this paper, we ascribed the difference to the formation of hydrogen bonding and van der Waals interactions between the CNC nanoparticles on adjacent oil droplets. EXPERIMENTS: Rheological properties of CNC-stabilized oil-in-water medium internal phase emulsions (MIPEs, oil content = 65% v/v) and high internal phase emulsions (HIPEs, oil content = 80% v/v) were comprehensively characterized using both oscillatory and rotational tests. FINDINGS: It was found that in the MIPEs, the van der Waals and hydrogen bonding interactions dominate the emulsion properties, whereas the compact structure of oil droplets plays a more important role in the HIPEs. CNC concentration in the aqueous phase also affects the emulsion properties, especially for the HIPEs, and the results can be correlated to the stabilization mechanisms we previously reported. The information from these tests provides a much-needed guidance for the practical application of CNC-stabilized emulsions.


Assuntos
Celulose , Nanopartículas , Emulsões , Reologia , Água
3.
ACS Appl Mater Interfaces ; 8(21): 13590-600, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27165172

RESUMO

Surface modification of cellulosic paper is demonstrated by employing plasma assisted atomic layer deposition. Al2O3 thin films are deposited on paper substrates, prepared with different fiber sizes, to improve their barrier properties. Thus, a hydrophobic paper is created with low gas permeability by combining the control of fiber size (and structure) with atomic layer deposition of Al2O3 films. Papers are prepared using Kraft softwood pulp and thermomechanical pulp. The cellulosic wood fibers are refined to obtain fibers with smaller length and diameter. Films of Al2O3, 10, 25, and 45 nm in thickness, are deposited on the paper surface. The work demonstrates that coating of papers prepared with long fibers efficiently reduces wettability with slight enhancement in gas permeability, whereas on shorter fibers, it results in significantly lower gas permeability. Wettability studies on Al2O3 deposited paper substrates have shown water wicking and absorption over time only in papers prepared with highly refined fibers. It is also shown that there is a certain fiber size at which the gas permeability assumes its minimum value, and further decrease in fiber size will reverse the effect on gas permeability.

4.
ACS Appl Mater Interfaces ; 7(25): 13882-8, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26068246

RESUMO

The large-ion-accessible surface area of carbon nanotubes (CNTs) and graphene sheets formed as yarns, forests, and films enables miniature high-performance supercapacitors with power densities exceeding those of electrolytics while achieving energy densities equaling those of batteries. Capacitance and energy density can be enhanced by depositing highly pseudocapacitive materials such as conductive polymers on them. Yarns formed from carbon nanotubes are proposed for use in wearable supercapacitors. In this work, we show that high power, energy density, and capacitance in yarn form are not unique to carbon materials, and we introduce niobium nanowires as an alternative. These yarns show higher capacitance and energy per volume and are stronger and 100 times more conductive than similarly spun carbon multiwalled nanotube (MWNT) and graphene yarns. The long niobium nanowires, formed by repeated extrusion and drawing, achieve device volumetric peak power and energy densities of 55 MW·m(-3) (55 W·cm(-3)) and 25 MJ·m(-3) (7 mWh·cm(-3)), 2 and 5 times higher than that for state-of-the-art CNT yarns, respectively. The capacitance per volume of Nb nanowire yarn is lower than the 158 MF·m(-3) (158 F·cm(-3)) reported for carbon-based materials such as reduced graphene oxide (RGO) and CNT wet-spun yarns, but the peak power and energy densities are 200 and 2 times higher, respectively. Achieving high power in long yarns is made possible by the high conductivity of the metal, and achievement of high energy density is possible thanks to the high internal surface area. No additional metal backing is needed, unlike for CNT yarns and supercapacitors in general, saving substantial space. As the yarn is infiltrated with pseudocapacitive materials such as poly(3,4-ethylenedioxythiophene) (PEDOT), the energy density is further increased to 10 MJ·m(-3) (2.8 mWh·cm(-3)). Similar to CNT yarns, niobium nanowire yarns are highly flexible and show potential for weaving into textiles and use in wearable devices.


Assuntos
Equipamentos e Provisões Elétricas , Nanofios/química , Nióbio/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Celulose/química , Capacitância Elétrica , Polímeros/química
5.
ACS Appl Mater Interfaces ; 5(18): 9057-66, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23957774

RESUMO

Lignocellulosic wood fibers and mineral fillers (calcium carbonate, talc, or clay) were used to prepare paper samples (handsheets), which were then subjected to a fluorocarbon plasma treatment. The plasma treatment was performed in two steps: first using oxygen plasma to create nanoscale roughness on the surface of the handsheet, and second fluorocarbon deposition plasma to add a layer of low surface energy material. The wetting behavior of the resulting fiber/mineral network (handsheet) was determined. It was found the samples that were subjected to oxygen plasma etching prior to fluorocarbon deposition exhibit superhydrophobicity with low contact angle hysteresis. On the other hand, those that were only treated by fluorocarbon plasma resulted in "sticky" hydrophobicity behavior. Moreover, as the mineral content in the handsheet increases, the hydrophobicity after plasma treatment decreases. Finally, it was found that although the plasma-treated handsheets show excellent water repellency they are not good water vapor barriers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...