Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38473633

RESUMO

The structure, composition and corrosion properties of thin films synthesized using the Pulsed Laser Deposition (PLD) technique starting from a three high entropy alloy (HEA) AlCoCrFeNix produced by vacuum arc remelting (VAR) method were investigated. The depositions were performed at room temperature on Si and mirror-like polished Ti substrates either under residual vacuum (low 10-7 mbar, films denoted HEA2, HEA6, and HEA10, which were grown from targets with Ni concentration molar ratio, x, equal to 0.4, 1.2, and 2.0, respectively) or under N2 (10-4 mbar, films denoted HEN2, HEN6, and HEN10 for the same Ni concentration molar ratios). The deposited films' structures, investigated using Grazing Incidence X-ray Diffraction, showed the presence of face-centered cubic and body-centered cubic phases, while their surface morphology, investigated using scanning electron microscopy, exhibited a smooth surface with micrometer size droplets. The mass density and thickness were obtained from simulations of acquired X-ray reflectivity curves. The films' elemental composition, estimated using the energy dispersion X-ray spectroscopy, was quite close to that of the targets used. X-ray Photoelectron Spectroscopy investigation showed that films deposited under a N2 atmosphere contained several percentages of N atoms in metallic nitride compounds. The electrochemical behavior of films under simulated body fluid (SBF) conditions was investigated by Open Circuit Potential (OCP) and Electrochemical Impedance Spectroscopy measurements. The measured OCP values increased over time, implying that a passive layer was formed on the surface of the films. It was observed that all films started to passivate in SBF solution, with the HEN6 film exhibiting the highest increase. The highest repassivation potential was exhibited by the same film, implying that it had the highest stability range of all analyzed films. Impedance measurements indicated high corrosion resistance values for HEA2, HEA6, and HEN6 samples. Much lower resistances were found for HEN10 and HEN2. Overall, HEN6 films exhibited the best corrosion behavior among the investigated films. It was noticed that for 24 h of immersion in SBF solution, this film was also a physical barrier to the corrosion process, not only a chemical one.

8.
Materials (Basel) ; 16(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37512181

RESUMO

The main purpose of this research is to evaluate the mechanical characteristics and biocompatibility of two novel titanium alloys, Ti15Mo7ZrxSi (x = 0, 0.5, 0.75, 1). These samples had already undergone grinding, polishing, cutting, and chipping. Electrochemical, metallographic, three-point bending, and microhardness studies were conducted on the studied materials to determine their corrosion behavior, microstructure, Young's modulus, and hardness. The first investigations revealed that both samples had biphasic and dendritic structures, elastic moduli that were between the highest and minimum values achieved by around 20 GPa, and favorable behavior when in contact with physiological fluids at ambient temperature. Ti15Mo7Zr0.5Si and Ti15Mo7Zr0.75Si, the research samples, had greater corrosion potentials, reduced corrosion rates, and therefore higher corrosion resistance, as well as modulus of elasticity values that were comparable to and closer to those of human bone. The results of this investigation indicate that both alloys exhibit favorable corrosion behavior, great biocompatibility, Young's modulus results lower than those of conventional alloys used in biomedical implants, and hardness values higher than commercially pure titanium.

9.
Materials (Basel) ; 16(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37109892

RESUMO

Here, potential metallic bipolar plate (BP) materials were manufactured by laser coating NiCr-based alloys with different Ti additions on low carbon steel substrates. The titanium content within the coating varied between 1.5 and 12.5 wt%. Our present study focussed on electrochemically testing the laser cladded samples in a milder solution. The electrolyte used for all of the electrochemical tests consisted of a 0.1 M Na2SO4 solution (acidulated with H2SO4 at pH = 5) with the addition of 0.1 ppm F-. The corrosion resistance properties of the laser-cladded samples was evaluated using an electrochemical protocol, which consisted of the open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) measurements, and potentiodynamic polarization, followed by potentiostatic polarization under simulated proton exchange membrane fuel cell (PEMFC) anodic and cathodic environments for 6 h each. After the samples were subjected to potentiostatic polarization, the EIS measurements and potentiodynamic polarization were repeated. The microstructure and chemical composition of the laser cladded samples were investigated by scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX) analysis.

10.
Materials (Basel) ; 16(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37109922

RESUMO

This study presents a novel laser processing technique in a liquid media to enhance the surface mechanical properties of a material, by thermal impact and micro-alloying at the subsurface level. An aqueous solution of nickel acetate (15% wt.) was used as liquid media for laser processing of C45E steel. A pulsed laser TRUMPH Truepulse 556 coupled to a PRECITEC 200 mm focal length optical system, manipulated by a robotic arm, was employed for the under-liquid micro-processing. The study's novelty lies in the diffusion of nickel in the C45E steel samples, resulting from the addition of nickel acetate to the liquid media. Micro-alloying and phase transformation were achieved up to a 30 µm depth from the surface. The laser micro-processed surface morphology was analysed using optical and scanning electron microscopy. Energy dispersive spectroscopy and X-ray diffraction were used to determine the chemical composition and structural development, respectively. The microstructure refinement was observed, along with the development of nickel-rich compounds at the subsurface level, contributing to an improvement of the micro and nanoscale hardness and elastic modulus (230 GPa). The laser-treated surface exhibited an enhancement of microhardness from 250 to 660 HV0.03 and an improvement of more than 50% in corrosion rate.

11.
Materials (Basel) ; 16(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903057

RESUMO

In the present study, the microstructure and mechanical properties of Ti-xTa (x = 5%, 15%, and 25% wt. Ta) alloys produced by using an induced furnace by the cold crucible levitation fusion technique were investigated and compared. The microstructure was examined by scanning electron microscopy and X-ray diffraction. The alloys present a microstructure characterized by the α' lamellar structure in a matrix of the transformed ß phase. From the bulk materials, the samples for the tensile tests were prepared and based on the results and the elastic modulus was calculated by deducting the lowest values for the Ti-25Ta alloy. Moreover, a surface alkali treatment functionalization was performed using 10 M NaOH. The microstructure of the new developed films on the surface of the Ti-xTa alloys was investigated by scanning electron microscopy and the chemical analysis revealed the formation of sodium titanate and sodium tantanate along with titanium and tantalum oxides. Using low loads, the Vickers hardness test revealed increased hardness values for the alkali-treated samples. After exposure to simulated body fluid, phosphorus and calcium were identified on the surface of the new developed film, indicating the development of apatite. The corrosion resistance was evaluated by open cell potential measurements in simulated body fluid before and after NaOH treatment. The tests were performed at 22 °C as well as at 40 °C, simulating fever. The results show that the Ta content has a detrimental effect on the investigated alloys' microstructure, hardness, elastic modulus, and corrosion behavior.

12.
Materials (Basel) ; 16(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36902947

RESUMO

The aim of the paper is to study the Zr addition effect on the mechanical properties and corrosion behavior of a high-entropy alloy from the CoCrFeMoNi system. This alloy was designed to be used for components in the geothermal industry that are exposed to high temperature and corrosion. Two alloys, one Zr-free (named Sample 1) and another one doped with 0.71 wt.% Zr (named Sample 2), were obtained in a vacuum arc remelting equipment from high-purity granular raw materials. Microstructural characterization and quantitative analysis by SEM and EDS were performed. The Young modulus values for the experimental alloys were calculated on the basis of a three-point bending test. Corrosion behavior was estimated by linear polarization test and by electrochemical impedance spectroscopy. The addition of Zr resulted in a decrease in the value of the Young modulus but also in a decrease in corrosion resistance. The beneficial effect of Zr on the microstructure was the grain refinement, and this ensured a good deoxidation of the alloy.

13.
Bioengineering (Basel) ; 9(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421087

RESUMO

The mechanical properties and electrochemical behavior of two new titanium alloys, Ti20Mo7Zr and Ti20Mo7Zr0.5Si, are investigated in this paper. The alloys have been manufactured by vacuum arc remelting (VAR) technique and studied to determine their microstructure, corrosion behavior, and mechanical properties. Metallographic observations and quantitative microanalysis by optical microscopy, scanning electron microscopy SEM, and energy dispersive X-rays spectroscopy EDX were performed. Data about the three-point bending test and microhardness are presented. For electrochemical properties, three different environments were used: Ringer solution at 25 °C, Ringer solution at 40 °C simulating fever condition, and 3.5% NaCl solution. Metallographic investigation revealed the biphasic and dendritic structure of both samples when the procedures were performed. Electrochemical testing in body simulation fluid, fever conditions, and saline medium showed that the lower the proportion of silicon in the samples, the higher the corrosion resistance. The formation of a titanium oxide layer on the surface of both samples was noticed using quantitative EDX analysis. The three-point bending test for the two samples revealed that the presence of silicon decreases the modulus of elasticity; the surface of the samples displayed soft and hard phases in the microhardness test. Electrochemical impedance spectroscopy (EIS) measurements were carried out at different potentials, and the obtained spectra exhibit a two-time constant system, attesting double-layer passive film on the samples.

14.
Materials (Basel) ; 15(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955302

RESUMO

In this work, the corrosion behavior of NiCr(Ti) protective coatings deposited on mild steel substrates through laser cladding technology is studied as an alternative new material for metallic bipolar plates used in PEMFC applications. For electrochemical testing, a solution consisting of 0.5 M H2SO4 + 2 ppm F- at room temperature is used as an electrolyte. The fluoride ions are added to simulate the conditions in the PEM fuel cell due to degradation of the proton exchange membrane and fluoride release. A saturated calomel electrode (SCE) is used as a reference electrode and a platinum mesh as the counter electrode. Scanning electron microscopy (SEM) and optical microscopy (OM) are used for studying the morphology of the protective coatings and the effect of Ti addition. The electrochemical evaluation consisted of measuring the open circuit potential (OCP), followed by electrochemical impedance spectroscopy measurements (EIS) and potentiodynamic polarization. It is found that the coatings with 5% Ti, 7% Ti and 10% Ti addition comply with the conditions of the US DOE regarding corrosion performance to be used as materials for the manufacture of the bipolar plates.

15.
Materials (Basel) ; 15(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35683112

RESUMO

Ti and its alloys have the most satisfactory properties for biomedical applications due to their specific strength, high corrosion resistance, and high biocompatibility. Ti-6Al-7Nb has been approved for clinical use, proving to be a viable replacement for the Ti-6Al-4V alloy that has been used for many decades in medical applications. In our study, the Ti-6Al-7Nb alloy underwent heat treatment, was cooled in various cooling media such as mineral oil and water, and was then quenched in the oven. The microstructure was investigated, and the mechanical characterization was carried out by Vickers microhardness test. Young's modulus measurements and tensile tests were performed in order to study the effect of cooling media on the material. To study the corrosion behavior, in vitro studies were performed on the Ti-6Al-7Nb samples in simulated body conditions by using artificial saliva. It was observed that the martensitic phase changed as a function of cooling media, and a less intensive cooling medium decreases strength properties' indicators as well as hardness values. The results emphasize that the use of heat treatment improves the passive layer's resistance in the presence of artificial saliva.

16.
Materials (Basel) ; 15(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35057194

RESUMO

The increased popularity of Ti and its alloys as important biomaterials is driven by their low modulus, greater biocompatibility, and better corrosion resistance in comparison to traditional biomaterials, such as stainless steel and Co-Cr alloys. Ti alloys are successfully used in severe stress situations, such as Ti-6Al-4V, but this alloy is related to long-term health problems and, in response, different Ti alloys composed of non-toxic and non-allergic elements such as Nb, Zr, Mo, and Ta have been developed for biomedical applications. In this context, binary alloys of titanium and tantalum have been developed and are predicted to be potential products for medical purposes. More than this, today, novel biocompatible alloys such as high entropy alloys with Ti and Ta are considered for biomedical applications and therefore it is necessary to clarify the influence of tantalum on the behavior of the alloy. In this study, various Ti-xTa alloys (with x = 5, 15, 25, and 30) were characterized using different techniques. High-resolution maps of the materials' surfaces were generated by scanning tunneling microscopy (STM), and atom distribution maps were obtained by energy dispersive X-ray spectroscopy (EDS). A thorough output of chemical composition, and hence the crystallographic structure of the alloys, was identified by X-ray diffraction (XRD). Additionally, the electrochemical behavior of these Ti-Ta alloys was investigated by EIS in simulated body fluid at different potentials. The passive layer resistance increases with the potential due to the formation of the passive layer of TiO2 and Ta2O5 and then decreases due to the dissolution processes through the passive film. Within the Ti-xTa alloys, Ti-25Ta demonstrates excellent passive layer and corrosion resistance properties, so it seems to be a promising product for metallic medical devices.

17.
Materials (Basel) ; 14(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34683526

RESUMO

Titanium alloys are used in medical devices due to their mechanical properties, but also for their corrosion resistance. The natural passivation of titanium-based biomaterials, on the surface of which a dense and coherent film of nanometric thickness is formed, composed mainly of TiO2, determines an apparent bioactivity of them. In this paper, the method of obtaining new Ti20MoxSi alloys (x = 0.0, 0.5, 0.75, and 1.0) is presented, their microstructure is analyzed, and their electrochemical responses in Ringer´s solution were systematically investigated by linear polarization, cyclic potential dynamic polarization, and electrochemical impedance spectroscopy (EIS). The alloys corrosion resistance is high, and no evidence of localized breakdown of the passive layer was observed. There is no regularity determined by the composition of the alloys, in terms of corrosion resistance, but it seems that the most resistant is Ti20Mo1.0Si.

18.
Materials (Basel) ; 14(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34501039

RESUMO

Nickel-based and cobalt-based metal alloys are frequently used in dentistry. The introduction of various elements in the alloy changes its characteristics, and a thorough study of each alloy should be completed to determine its appropriate corrosion resistance and biocompatibility in contact with physiological fluids. There are scarce investigations on these widely used dental alloys in Ringer solution, and findings in this research bring new experimental data and information. The present study evaluated and compared the corrosion behavior of six NiCr- and two CoCr-based dental materials in Ringer solution, using the following techniques: potentiostatic polarization curves (chronoamperometry), microstructural analysis, and EIS (electrochemical impedance spectroscopy). The results obtained in this investigation showed that in the NiCr-based specimens Ni4, Ni5, and Ni6 the stability of the passive layer was destroyed after polarization and a development and growth of stable pits was found in the microstructural analysis after electrochemical treatment. In terms of susceptibility to corrosion, two different groups of specimens were derived from this investigation. A first group which included the two CoCr (Co1 and Co2) and three of the six NiCr alloys studied (Ni1, Ni2, and Ni3). A second group with the other NiCr alloys investigated Ni4, Ni5, and Ni6.

19.
Nanomaterials (Basel) ; 10(2)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098412

RESUMO

Aseptic loosening and periprosthetic infections are the main causes of implant failure. Strategies to mitigate this drawback are therefore mandatory to avoid primary and revision replacement surgeries. A functional bioapatite-biopolymer double nanostructure fabricated by matrix-assisted pulsed laser evaporation to prevent infection of orthopedic and dental implants could promote osseointegration and ensure controlled delivery of natural antimicrobial drugs. The synthesized nanostructure consists of two overlapping layers, the lower from a biocompatible polymer for anticorrosive protection, and the upper of bioactive glass incorporating antimicrobial plant extract, acting as a potential drug delivery system. Morphology, composition, adherence, ability for drug delivery and biological properties (cytotoxicity and antimicrobial effect) were studied. Structures proved compact and stable, conserving a remarkable drug delivery ability for more than 21 days, i.e., enough to ensure long-term microbes' eradication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...