Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 12(4): 2855-2873, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628169

RESUMO

Lentil protein hydrolysates (LPH) and lentil protein hydrolysates cross-linked (LPHC) were grafted with gum Arabic (GA) through a wet Maillard reaction at 100°C for 2 h and called MLPH and MLPHC. The samples were assessed for absorption, degree of grafting (DG), surface hydrophobicity, antioxidant activity, molecular weight (MW) profile, chemical alteration, volatile compounds, functional and sensory properties. Results showed that Maillard grafting led to increase in absorption and DG (maximum value: MLPHC), and led to the reduction of the surface hydrophobicity and antioxidant activity (minimum value: MLPHC). MW profiles indicated that MLPH and MLPHC formed new bands at MW >250 kDa. Regarding the Fourier transform infrared spectroscopy (FTIR), Maillard conjugation led to the occurrence of peaks at 1759 and 1765 cm-1, while the intensities of amide I bands at 1637 and 1659 cm-1 and amide II bands at 1498 and 1495 cm-1 were decreased. Hydrolysis, cross-linking, and especially Maillard grafting provided well-balanced content of volatile components. Indeed, the proportions of alcohols, ketones, aldehydes, and acids were changed, thereby, the inherent grassy and planty tastes were diminished while new umami taste was developed. Maillard grafting led to significant improvement of functional properties, while MLPH and MLPHC indicated the highest emulsifying activity at pH 10.0 (73.76 and 70.12 m2/g, respectively) and stability (369.64 and 288.22 min), foaming capacity (88.57% and 142.86%) and stability (60.57% and 72%). Sensory analysis has demonstrated that umami taste was highly developed in MLPH and MLPHC, which can be well considered as meat proteins and flavor enhancers such as monosodium glutamate (MSG).

2.
Food Sci Nutr ; 11(6): 2974-2989, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37324857

RESUMO

Lentil peptides have shown promising bioactive properties regarding the antioxidant activity and also inhibitory activity of angiotensin-I-converting enzyme (ACE). Sequential hydrolysis of proteins has shown a higher degree of hydrolysis with enhanced antioxidant and ACE-inhibitory activities. The lentil protein concentrate (LPC) was sequentially hydrolyzed using Alcalase and Flavourzyme at 2% w/w. The hydrolysate (LPH) was cross-linked (LPHC) or sonicated (LPHUS) and sequentially cross-linked (LPHUSC). Amino acid profile, molecular weight (MW) distribution, DPPH and ABTS radical scavenging activities (RSA; 7 mg/mL), ACE (0.1-2 mg/mL), α-glucosidase, and α-amylase inhibitory activities (10-500 µg/mL), and umami taste were determined. The highest DPPH RSA was obtained for LPH (68.75%), followed by LPHUSC (67.60%), and LPHUS (67.49%) while the highest ABTS RSA values were obtained for LPHC (97.28%) and LPHUSC (97.20%). Cross-linking and sonication led to the improvement of the ACE-inhibitory activity so that LPHUSC and LPHC had IC50 values of 0.23 and 0.27 mg/mL, respectively. LPHC and LPHUSC also indicated higher α-glucosidase inhibitory activity (IC50 of 1.2 and 1.23 mg/mL) compared to LPH (IC50 of 1.74 mg/mL) and LPHUS (IC50 of 1.75 mg/mL) while the IC50 value of acarbose indicated 0.51 mg/mL. Moreover, LPHC and LPHUSC exhibited higher α-amylase inhibitory activities (IC50 of 1.35 and 1.16 mg/mL) than LPHUS (IC50 of 1.95 mg/mL), and LPH (IC50 of 2.51 mg/mL) while acarbose had an IC50 value of 0.43 mg/mL. Umami taste analysis revealed that LPH and LPHC due to MW of 1.7 and 2.3 kDa and also high umami amino acids could be well considered as representative of meaty and umami analog flavors while indicating stronger antioxidant, antihypertension, and antidiabetic attributes.

3.
Food Sci Nutr ; 11(3): 1257-1271, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911847

RESUMO

New mixed Alcalase-hydrolysates were developed using corn gluten meal (CP) and soy protein (SP) hydrolysates, namely CPH, SPH, SPH30:CPH70, SPH70:CPH30, and SPH50:CPH50. Amino acid profile, surface hydrophobicity (H 0), molecular weight (MW) distribution, antioxidant activity, angiotensin-converting enzyme (ACE), α-amylase, and α-glucosidase inhibitory activities, and functional characteristics of hydrolysates were determined. Hydrolysis changed the amount of hydrophilic and hydrophobic amino acid composition and significantly increased the H 0 values of hydrolysates, especially for CPH. The DPPH radical scavenging activity (RSA) was higher for CPH, SPH30:CPH70, and SPH50:CPH50 than SPH and SPH70:CPH30. Moreover, SPH, SPH70:CPH30, and SPH50:CPH50 showed lower MW than CPH, and this correlated with the higher hydrophilicity, and ABTS and hydroxyl RSA values obtained for SPH and the mixed hydrolysates with predominantly SPH. SPH70:CPH30 exhibited higher ACE, α-glucosidase, and α-amylase inhibitory activities among all samples due to its specific peptides with high capacity to interact with amino acid residues located at the enzyme active site and also low binding energy. At 15% degree of hydrolysis, both SPH and CPH showed enhanced solubility at pH 4.0, 7.0 and 9.0, emulsifying activity, and foaming capacity. Taken together, SPH70:CPH30 displayed strong antioxidant, antihypertensive, and antidiabetic attributes, emulsifying activity and stability indexes, and foaming capacity and foaming stability, making it a promising multifunctional ingredient for the development of functional food products.

4.
Int J Biol Macromol ; 152: 305-313, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088229

RESUMO

In this study, a new strain suspected to be Aureobasidium pullulans was isolated from trees leaves. The molecular characterization and the resulting phylogenetic tree showed that the isolated strain was A. pullulans. Also, the results of methylation analysis, monosaccharide composition, FTIR, NMR and XRD confirmed that the obtained exo-polysaccharide from the mentioned strain was pullulan. The pullulan production optimization by central composite design (CCD) indicated that the maximum yield obtained under optimum conditions (pH of 6.5, sucrose concentration of 5.5% (w/v) and yeast extract concentration of 0.1% (w/v)) was 51.4 ± 0.50 g/L. The produced pullulan had an average molecular weight (Mw) of 2.07 × 105 g.mol-1 based on gel permeation chromatography results. The decomposition temperature (Td) of the produced pullulan was ~300 °C and also, the resulting pullulan had a Newtonian flow behavior in a wide range of concentrations.


Assuntos
Aureobasidium/metabolismo , Glucanos/metabolismo , Peso Molecular , Monossacarídeos/metabolismo , Filogenia , Polissacarídeos/metabolismo , Sacarose/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA