Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biomolecules ; 12(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-36008945

RESUMO

The bipolar androgen therapy (BAT) includes the treatment of prostate cancer (PCa) patients with supraphysiological androgen level (SAL). Interestingly, SAL induces cell senescence in PCa cell lines as well as ex vivo in tumor samples of patients. The SAL-mediated cell senescence was shown to be androgen receptor (AR)-dependent and mediated in part by non-genomic AKT signaling. RNA-seq analyses compared with and without SAL treatment as well as by AKT inhibition (AKTi) revealed a specific transcriptome landscape. Comparing the top 100 genes similarly regulated by SAL in two human PCa cell lines that undergo cell senescence and being counteracted by AKTi revealed 33 commonly regulated genes. One gene, ERBB receptor feedback inhibitor 1 (ERRFI1), encodes the mitogen-inducible gene 6 (MIG6) that is potently upregulated by SAL, whereas the combinatory treatment of SAL with AKTi reverses the SAL-mediated upregulation. Functionally, knockdown of ERRFI1 enhances the pro-survival AKT pathway by enhancing phosphorylation of AKT and the downstream AKT target S6, whereas the phospho-retinoblastoma (pRb) protein levels were decreased. Further, the expression of the cell cycle inhibitor p15INK4b is enhanced by SAL and ERRFI1 knockdown. In line with this, cell senescence is induced by ERRFI1 knockdown and is enhanced slightly further by SAL. Treatment of SAL in the ERRFI1 knockdown background enhances phosphorylation of both AKT and S6 whereas pRb becomes hypophosphorylated. Interestingly, the ERRFI1 knockdown does not reduce AR protein levels or AR target gene expression, suggesting that MIG6 does not interfere with genomic signaling of AR but represses androgen-induced cell senescence and might therefore counteract SAL-induced signaling. The findings indicate that SAL treatment, used in BAT, upregulates MIG6, which inactivates both pRb and the pro-survival AKT signaling. This indicates a novel negative feedback loop integrating genomic and non-genomic AR signaling.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Androgênios/metabolismo , Androgênios/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Fosforilação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
2.
Oncogene ; 41(7): 943-959, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34667276

RESUMO

The bipolar androgen therapy (BAT) to treat prostate cancer (PCa) includes cycles of supraphysiological androgen levels (SAL) under androgen-deprivation therapy (ADT). We showed previously that SAL induces cellular senescence in androgen-sensitive PCa cells and in ex vivo-treated patient PCa tumor samples. Here, we analyzed the underlying molecular pathway and reveal that SAL induces cellular senescence in both, castration-sensitive (CSPC) LNCaP and castration-resistant PCa (CRPC) C4-2 cells through the cell cycle inhibitor p15INK4b and increased phosphorylation of AKT. Treatment with the AKT inhibitor (AKTi) potently inhibited SAL-induced expression of p15INK4b and cellular senescence in both cell lines. Proximity-ligation assays (PLA) combined with high-resolution laser-scanning microscopy indicate that SAL promotes interaction of endogenous androgen receptor (AR) with AKT in the cytoplasm as well as in the nucleus detectable after three days. Transcriptome sequencing (RNA-seq) comparing the SAL-induced transcriptomes of LNCaP with C4-2 cells as well as with AKTi-treated cell transcriptomes revealed landscapes for cell senescence. Interestingly, one of the identified genes is the lncRNASAT1. SAL treatment of native patient tumor samples ex vivo upregulates lncRNASAT1. In PCa tumor tissues, lncRNASAT1 is downregulated compared with nontumor tissues of the same patients. Knockdown indicates that the lncRNASAT1 is crucial for SAL-induced cancer-cell senescence as an upstream factor for pAKT and for p15INK4b. Further, knockdown of lncRNASAT1 enhances cell proliferation by SAL, suggesting that lncRNASAT1 serves as a tumor suppressor at SAL. Interestingly, immunoprecipitation of AR detected lncRNASAT1 as an AR-interacting partner that regulates AR target-gene expression. Similarly, RNA-ChIP experiments revealed the interaction of AR with lncRNASAT1 on chromatin. Thus, we identified a novel AR-lncRNASAT1-AKT-p15INK4b signaling axis to mediate SAL-induced cellular senescence.


Assuntos
Androgênios
4.
Cancers (Basel) ; 13(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34439179

RESUMO

The human telomerase is a key factor during tumorigenesis in prostate cancer (PCa). The androgen receptor (AR) is a key drug target controlling PCa growth and regulates hTERT expression, but is described to either inhibit or to activate. Here, we reveal that androgens repress and activate hTERT expression in a concentration-dependent manner. Physiological low androgen levels activate, while, notably, supraphysiological androgen levels (SAL), used in bipolar androgen therapy (BAT), repress hTERT expression. We confirmed the SAL-mediated gene repression of hTERT in PCa cell lines, native human PCa samples derived from patients treated ex vivo, as well as in cancer spheroids derived from androgen-dependent or castration resistant PCa (CRPC) cells. Interestingly, chromatin immuno-precipitation (ChIP) combined with functional assays revealed a positive (pARE) and a negative androgen response element (nARE). The nARE was narrowed down to 63 bp in the hTERT core promoter region. AR and tumor suppressors, inhibitor of growth 1 and 2 (ING1 and ING2, respectively), are androgen-dependently recruited. Mechanistically, knockdown indicates that ING1 and ING2 mediate AR-regulated transrepression. Thus, our data suggest an oppositional, biphasic function of AR to control the hTERT expression, while the inhibition of hTERT by androgens is mediated by the AR co-repressors ING1 and ING2.

5.
Biomolecules ; 11(8)2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439818

RESUMO

Inhibitor of growth 3 (ING3) is one of five members of the ING tumour suppressor family, characterized by a highly conserved plant homeodomain (PHD) as a reader of the histone mark H3K4me3. ING3 was reported to act as a tumour suppressor in many different cancer types to regulate apoptosis. On the other hand, ING3 levels positively correlate with poor survival prognosis of prostate cancer (PCa) patients. In PCa cells, ING3 acts rather as an androgen receptor (AR) co-activator and harbours oncogenic properties in PCa. Here, we show the identification of a novel ING3 splice variant in both the human PCa cell line LNCaP and in human PCa patient specimen. The novel ING3 splice variant lacks exon 11, ING3∆ex11, which results in deletion of the PHD, providing a unique opportunity to analyse functionally the PHD of ING3 by a natural splice variant. Functionally, overexpression of ING3Δex11 induced morphological changes of LNCaP-derived 3D spheroids with generation of lumen and pore-like structures within spheroids. Since these structures are an indicator of epithelial-mesenchymal transition (EMT), key regulatory factors and markers for EMT were analysed. The data suggest that in contrast to ING3, ING3Δex11 specifically modulates the expression of key EMT-regulating upstream transcription factors and induces the expression of EMT markers, indicating that the PHD of ING3 inhibits EMT. In line with this, ING3 knockdown also induced the expression of EMT markers, confirming the impact of ING3 on EMT regulation. Further, ING3 knockdown induced cellular senescence via a pathway leading to cell cycle arrest, indicating an oncogenic role for ING3 in PCa. Thus, the data suggest that the ING3Δex11 splice variant lacking functional PHD exhibits oncogenic characteristics through triggering EMT in PCa cells.


Assuntos
Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Neoplasias da Próstata/genética , Splicing de RNA , Proteínas Supressoras de Tumor/genética , Linhagem Celular Tumoral , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
6.
Cancers (Basel) ; 12(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650419

RESUMO

The androgen receptor (AR) plays a leading role in the control of prostate cancer (PCa) growth. Interestingly, structurally different AR antagonists with distinct mechanisms of antagonism induce cell senescence, a mechanism that inhibits cell cycle progression, and thus seems to be a key cellular response for the treatment of PCa. Surprisingly, while physiological levels of androgens promote growth, supraphysiological androgen levels (SAL) inhibit PCa growth in an AR-dependent manner by inducing cell senescence in cancer cells. Thus, oppositional acting ligands, AR antagonists, and agonists are able to induce cellular senescence in PCa cells, as shown in cell culture model as well as ex vivo in patient tumor samples. This suggests a dual AR-signaling dependent on androgen levels that leads to the paradox of the rational to keep the AR constantly inactivated in order to treat PCa. These observations however opened the option to treat PCa patients with AR antagonists and/or with androgens at supraphysiological levels. The latter is currently used in clinical trials in so-called bipolar androgen therapy (BAT). Notably, cellular senescence is induced by AR antagonists or agonist in both androgen-dependent and castration-resistant PCa (CRPC). Pathway analysis suggests a crosstalk between AR and the non-receptor tyrosine kinase Src-Akt/PKB and the PI3K-mTOR-autophagy signaling in mediating AR-induced cellular senescence in PCa. In this review, we summarize the current knowledge of therapeutic induction and intracellular pathways of AR-mediated cellular senescence.

7.
J Steroid Biochem Mol Biol ; 201: 105689, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32360904

RESUMO

While several studies link a state of hypothyroidism to extended lifespan of humans and mice, the role of thyroid hormone in cancer is more controversial since tumor-promoting as well as tumor-suppressive effects are known. In general, aberrant thyroid hormone levels are associated with increased cancer incidence. For prostate cancer (PCa) a prospective cohort study indicates that lower thyrotropin (TSH) and higher thyroxin (T4) levels are associated with an increased risk of PCa. However, triiodothyronine (T3) can attenuate PCa progression. Here we show that T3 treatment of human PCa cells reduces cell proliferation, by induction of cellular senescence. Interestingly, we could neither detect an increased expression of p16INK4A nor p21CIP1 cell cycle inhibitors, which are mediators of the two major pathways for senescence induction. This suggests that the T3-induced cellular senescence of PCa cells is driven by an alternative pathway. We show that T3-mediated cellular senescence is associated with increase of DEC1 expression encoded by the BHLHE40 gene and p15INK4B encoded by CDKN2B. Each DEC1/BHLHE40 and p15INK4B/CDKN2B knockdown reduced significantly the level of T3-mediated cellular senescence. The data suggest that DEC1 and p15INK4B are crucial for the T3-induced cellular senescence. In line with a protective role of cellular senescence in cancer, public databases provide evidence linking low DEC1 expression to poor survival of PCa patients. Further we show that the BHLHE40 promoter is responsive to T3 suggesting BHLHE40 being a target gene for the thyroid hormone receptor (TR). Taken together, the data suggest that T3 mediates cellular senescence in PCa cells through induction of DEC1- and p15INK4B -dependent pathway.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Senescência Celular , Proteínas de Homeodomínio/metabolismo , Neoplasias da Próstata/metabolismo , Hormônios Tireóideos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Masculino , Neoplasias da Próstata/genética
9.
Iran Biomed J ; 22(3): 193-201, 2017 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-28941453

RESUMO

Background: Artificial oligonucleotides like DNA or RNA aptamers can be used as biodiagnostic alternatives for antibodies to detect pathogens. Comparing to antibodies, artificial oligonucleotides are produced easily at lower costs and are more stable. Neisseria meningitidis, the causative agent of meningitis, is responsible for about 1% of infections in an epidemic period. Specific DNA aptamers that bind to N. meningitidis serogroup B were identified by whole-cell Systemic Evolution of Ligands by EXponential Enrichment (SELEX). Methods: The SELEX begins with a library of labeled ssDNA molecules. After six rounds of selection and two rounds of counter-selection, 60 clones were obtained, of which the binding efficiency of 21 aptamers to the aforementioned bacterium was tested by flow cytometry. Results: The aptamers K3 and K4 showed the highest affinity to N. meningitidis serogroup B and no affinity to N. meningitidis serogroups Y, A, and C, or to other meningitis causing bacteria. The dissociation constant (Kd value) for K3 and K4 were calculated as 28.3±8.9 pM and 39.1±8.6 pM, respectively. K3 aptamer with the lowest Kd was chosen as the main aptamer. K3 could detect N. meningitidis in patients' cerebrospinal fluid (CSF) samples and in CSF from healthy volunteers inoculated with N. meningitidis serogroup B (ATCC 13090) at 200 and 100 CFU ml-1, respectively. Conclusion: The findings suggest the application of the developed aptamer in specific detection of N. meningitidis serogroup B amongst a group of meningitis causing bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...