Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Neurobiol Dis ; 198: 106537, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38772452

RESUMO

Hereditary spastic paraplegia (HSP) comprises a large group of neurogenetic disorders characterized by progressive lower extremity spasticity. Neurological evaluation and genetic testing were completed in a Malian family with early-onset HSP. Three children with unaffected consanguineous parents presented with symptoms consistent with childhood-onset complicated HSP. Neurological evaluation found lower limb weakness, spasticity, dysarthria, seizures, and intellectual disability. Brain MRI showed corpus callosum thinning with cortical and spinal cord atrophy, and an EEG detected slow background in the index patient. Whole exome sequencing identified a homozygous missense variant in the adaptor protein (AP) complex 2 alpha-2 subunit (AP2A2) gene. Western blot analysis showed reduced levels of AP2A2 in patient-iPSC derived neuronal cells. Endocytosis of transferrin receptor (TfR) was decreased in patient-derived neurons. In addition, we observed increased axon initial segment length in patient-derived neurons. Xenopus tropicalis tadpoles with ap2a2 knockout showed cerebral edema and progressive seizures. Immunoprecipitation of the mutant human AP-2-appendage alpha-C construct showed defective binding to accessory proteins. We report AP2A2 as a novel genetic entity associated with HSP and provide functional data in patient-derived neuron cells and a frog model. These findings expand our understanding of the mechanism of HSP and improve the genetic diagnosis of this condition.


Assuntos
Complexo 2 de Proteínas Adaptadoras , Endocitose , Paraplegia Espástica Hereditária , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Complexo 2 de Proteínas Adaptadoras/genética , Endocitose/genética , Endocitose/fisiologia , Mutação/genética , Mutação de Sentido Incorreto , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Xenopus
2.
Genet Med ; 26(2): 101023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947183

RESUMO

PURPOSE: We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants. METHODS: The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells. RESULTS: Biallelic variants in CRELD1 were found in 18 participants from 14 families. Affected individuals displayed an array of phenotypes involving developmental delay, early-onset epilepsy, and hypotonia, with about half demonstrating cardiac arrhythmias and some experiencing recurrent infections. Most harbored a frameshift in trans with a missense allele, with 1 recurrent variant, p.(Cys192Tyr), identified in 10 families. X tropicalis tadpoles with creld1 knockdown displayed developmental defects along with increased susceptibility to induced seizures compared with controls. Additionally, human CRELD1 harboring missense variants from affected individuals had reduced protein function, indicated by a diminished ability to induce craniofacial defects when overexpressed in X tropicalis. Finally, baseline analyses of peripheral blood mononuclear cells showed similar proportions of immune cell subtypes in patients compared with healthy donors. CONCLUSION: This patient cohort, combined with experimental data, provide evidence of a multisystem clinical syndrome mediated by recessive variants in CRELD1.


Assuntos
Transtornos do Neurodesenvolvimento , Reinfecção , Humanos , Leucócitos Mononucleares , Síndrome , Fenótipo , Arritmias Cardíacas/genética , Transtornos do Neurodesenvolvimento/genética , Moléculas de Adesão Celular/genética , Proteínas da Matriz Extracelular/genética
4.
Mol Biol Rep ; 50(12): 9963-9970, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897612

RESUMO

BACKGROUND: Bardet-Biedl Syndrome (BBS) is a rare (1:13,500-1-160,000) heterogeneous congenital disorder, characterized by postaxial polydactyly, obesity, hypogonadism, rod-cone dystrophy, cognitive impairment, and renal abnormalities (renal cystic dysplasia, anatomical malformation). To date about twenty-five genes have been identified to cause BBS, which accounts for about 80% of BBS diagnosis. METHODS: In the current study, we have performed mutational screening of four Pakistani consanguineous families (A-D) with clinical manifestation of BBS by microsatellite-based genotyping and whole exome sequencing. RESULTS: Analysis of the data revealed four variants, including a novel/unique inheritance pattern of compound heterozygous variants, p.(Ser40*) and p.(Thr259Leufs*21), in MKKS gene, novel homozygous variant, p.(Gly251Val)] in BBS7 gene and two previously reported p.(Thr259Leufs*21) in MKKS and p.(Met1Lys) in BBS5 gene. The variants were found segregated with the disorder within the families. CONCLUSION: The study not only expanded mutations spectrum in the BBS genes, but this will facilitate diagnosis and genetic counselling of families carrying BBS related phenotypes in Pakistani population.


Assuntos
Síndrome de Bardet-Biedl , Humanos , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/diagnóstico , Consanguinidade , Linhagem , Análise Mutacional de DNA , Mutação/genética , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a Fosfato
5.
Am J Med Genet A ; 188(10): 2869-2878, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35899841

RESUMO

The Pediatric Genomics Discovery Program (PGDP) at Yale uses next-generation sequencing (NGS) and translational research to evaluate complex patients with a wide range of phenotypes suspected to have rare genetic diseases. We conducted a retrospective cohort analysis of 356 PGDP probands evaluated between June 2015 and July 2020, querying our database for participant demographics, clinical characteristics, NGS results, and diagnostic and research findings. The three most common phenotypes among the entire studied cohort (n = 356) were immune system abnormalities (n = 105, 29%), syndromic or multisystem disease (n = 103, 29%), and cardiovascular system abnormalities (n = 62, 17%). Of 216 patients with final classifications, 77 (36%) received new diagnoses and 139 (64%) were undiagnosed; the remaining 140 patients were still actively being investigated. Monogenetic diagnoses were found in 67 (89%); the largest group had variants in known disease genes but with new contributions such as novel variants (n = 31, 40%) or expanded phenotypes (n = 14, 18%). Finally, five PGDP diagnoses (8%) were suggestive of novel gene-to-phenotype relationships. A broad range of patients can benefit from single subject studies combining NGS and functional molecular analyses. All pediatric providers should consider further genetics evaluations for patients lacking precise molecular diagnoses.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Estudos de Coortes , Testes Genéticos , Humanos , Fenótipo , Estudos Retrospectivos
6.
Cold Spring Harb Protoc ; 2022(4): Pdb.prot106344, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34031209

RESUMO

Xenopus is a powerful model system for cell and developmental biology in part because frogs produce thousands of eggs and embryos year-round. For cell biological studies, egg extracts can mimic many processes in a cell-free system. For developmental biology, Xenopus embryos are a premier system, combining cut-and-paste embryology with modern gene manipulation tools. Xenopus tropicalis are particularly suited to genetic studies because of their diploid genome, as compared to the tetraploid genome of Xenopus laevis When collecting eggs, there are differences in timing of steps, amounts of hormone administered, and handling of females between these species. In this protocol, X. tropicalis females are induced with a hormone that stimulates ovulation, and then eggs are collected. To administer the ovulation hormone and express eggs, it is necessary to be comfortable with handling frogs. Proficient handling of X. tropicalis requires practice, as they are relatively small, active, and slippery.


Assuntos
Genoma , Ovulação , Animais , Diploide , Feminino , Xenopus , Xenopus laevis/genética
7.
Cold Spring Harb Protoc ; 2022(5): Pdb.prot105676, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34031211

RESUMO

Optical coherence tomography (OCT) imaging can be used to visualize craniocardiac structures in the Xenopus model system. OCT is analogous to ultrasound, utilizing light instead of sound to create a gray-scale image from the echo time delay of infrared light reflected from the specimen. OCT is a high-speed, cross-sectional, label-free imaging modality, which can outline dynamic in vivo morphology at resolutions approaching histological detail. OCT imaging can acquire 2D and 3D data in real time to assess cardiac and facial structures. Additionally, during cardiac imaging, Doppler imaging can be used to assess the blood flow pattern in relation to the intracardiac structures. Importantly, OCT can reproducibly and efficiently provide comprehensive, nondestructive in vivo cardiac and facial phenotyping. Tadpoles do not require preprocessing and thus can be further raised or analyzed after brief immobilization during imaging. The rapid development of the Xenopus model combined with a rapid OCT imaging protocol allows the identification of specific gene/teratogen phenotype relationships in a short period of time. Loss- or gain-of-function experiments can be evaluated in 4-5 d, and OCT imaging only requires ∼5 min per tadpole. Thus, we find this pairing an efficient workflow for screening numerous candidate genes derived from human genomic studies to in-depth mechanistic studies.


Assuntos
Raios Infravermelhos , Tomografia de Coerência Óptica , Animais , Estudos Transversais , Larva , Xenopus laevis
8.
Cold Spring Harb Protoc ; 2022(4): Pdb.prot107644, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34244348

RESUMO

Microinjection is an important technique used to study development in the oocyte and early embryo. In Xenopus, substances such as DNA, mRNA, and morpholino oligonucleotides have traditionally been injected into Xenopus laevis, because of their large embryo size and the relatively long time from their fertilization to first division. In the past few decades, Xenopus tropicalis has become an important model in developmental biology; it is particularly useful in genetic studies. The advent and rapid development of CRISPR-Cas9 technology has provided an array of targeted gene manipulations for which X. tropicalis is particularly suited. The equipment and protocol for X. tropicalis microinjection is broadly transferable from X. laevis There are important differences between the species to consider, however, including the smaller embryo size and faster embryo development time in X. tropicalis There are a number of solutions and reagents that differ in concentration and composition as well. Here we describe a microinjection protocol specifically for studies in X. tropicalis.


Assuntos
Microinjeções , Animais , RNA Mensageiro/genética , Xenopus/genética , Xenopus laevis/genética
9.
Am J Med Genet A ; 185(4): 1076-1080, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33438828

RESUMO

De novo heterozygous variants in the brain-specific transcription factor Neuronal Differentiation Factor 2 (NEUROD2) have been recently associated with early-onset epileptic encephalopathy and developmental delay. Here, we report an adolescent with developmental delay without seizures who was found to have a novel de novo heterozygous NEUROD2 missense variant, p.(Leu163Pro). Functional testing using an in vivo assay of neuronal differentiation in Xenopus laevis tadpoles demonstrated that the patient variant of NEUROD2 displays minimal protein activity, strongly suggesting a loss of function effect. In contrast, a second rare NEUROD2 variant, p.(Ala235Thr), identified in an adolescent with developmental delay but lacking parental studies for inheritance, showed normal in vivo NEUROD2 activity. We thus provide clinical, genetic, and functional evidence that NEUROD2 variants can lead to developmental delay without accompanying early-onset seizures, and demonstrate how functional testing can complement genetic data when determining variant pathogenicity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/patologia , Deficiências do Desenvolvimento/genética , Neuropeptídeos/genética , Adolescente , Animais , Encéfalo/diagnóstico por imagem , Criança , Deficiências do Desenvolvimento/patologia , Modelos Animais de Doenças , Feminino , Heterozigoto , Humanos , Larva/genética , Masculino , Fenótipo , Convulsões/genética , Convulsões/patologia , Xenopus laevis/genética
10.
J Med Genet ; 58(7): 453-464, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32631816

RESUMO

BACKGROUND: Cilia are dynamic cellular extensions that generate and sense signals to orchestrate proper development and tissue homeostasis. They rely on the underlying polarisation of cells to participate in signalling. Cilia dysfunction is a well-known cause of several diseases that affect multiple organ systems including the kidneys, brain, heart, respiratory tract, skeleton and retina. METHODS: Among individuals from four unrelated families, we identified variants in discs large 5 (DLG5) that manifested in a variety of pathologies. In our proband, we also examined patient tissues. We depleted dlg5 in Xenopus tropicalis frog embryos to generate a loss-of-function model. Finally, we tested the pathogenicity of DLG5 patient variants through rescue experiments in the frog model. RESULTS: Patients with variants of DLG5 were found to have a variety of phenotypes including cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations. We also observed a loss of cilia in cystic kidney tissue of our proband. Knockdown of dlg5 in Xenopus embryos recapitulated many of these phenotypes and resulted in a loss of cilia in multiple tissues. Unlike introduction of wildtype DLG5 in frog embryos depleted of dlg5, introduction of DLG5 patient variants was largely ineffective in restoring proper ciliation and tissue morphology in the kidney and brain suggesting that the variants were indeed detrimental to function. CONCLUSION: These findings in both patient tissues and Xenopus shed light on how mutations in DLG5 may lead to tissue-specific manifestations of disease. DLG5 is essential for cilia and many of the patient phenotypes are in the ciliopathy spectrum.


Assuntos
Ciliopatias/genética , Anormalidades Congênitas/genética , Proteínas de Membrana/genética , Mutação , Proteínas Supressoras de Tumor/genética , Animais , Encéfalo/patologia , Criança , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Feto/anormalidades , Técnicas de Silenciamento de Genes , Proteínas Hedgehog/metabolismo , Humanos , Rim/patologia , Masculino , Linhagem , Transdução de Sinais , Sequenciamento do Exoma , Xenopus
11.
Am J Med Genet A ; 182(10): 2291-2296, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32812332

RESUMO

Recessive variants in the GLDN gene, which encodes the gliomedin protein and is involved in nervous system development, have recently been associated with Arthrogryposis Multiplex Congenita (AMC), a heterogenous condition characterized by congenital contractures of more than one joint. Two cohorts of patients with GLDN-associated AMC have previously been described, evolving the understanding of the condition from lethal to survivable with the provision of significant neonatal support. Here, we describe one additional patient currently living with the syndrome, having one novel variant, p.Leu365Phe, for which we provide functional data supporting its pathogenicity. We additionally provide experimental data for four other previously reported variants lacking functional evidence, including p.Arg393Lys, the second variant present in our patient. We discuss unique and defining clinical features, adding calcium-related findings which appear to be recurrent in the GLDN cohort. Finally, we compare all previously reported patients and draw new conclusions about scope of illness, with emphasis on the finding of pulmonary hypoplasia, suggesting that AMC secondary to GLDN variants may be best fitted under the umbrella of fetal akinesia deformation sequence (FADS).


Assuntos
Artrogripose/genética , Predisposição Genética para Doença , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Artrogripose/patologia , Pré-Escolar , Feminino , Humanos , Mutação , Linhagem
12.
Hum Mol Genet ; 29(11): 1900-1921, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32196547

RESUMO

CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell-cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.


Assuntos
Cateninas/genética , Fenda Labial/genética , Fissura Palatina/genética , Anormalidades Craniofaciais/genética , Ectrópio/genética , Cardiopatias Congênitas/genética , Anormalidades Dentárias/genética , Adolescente , Adulto , Animais , Anodontia/diagnóstico por imagem , Anodontia/genética , Anodontia/fisiopatologia , Criança , Pré-Escolar , Fenda Labial/diagnóstico por imagem , Fenda Labial/fisiopatologia , Fissura Palatina/diagnóstico por imagem , Fissura Palatina/fisiopatologia , Anormalidades Craniofaciais/diagnóstico por imagem , Anormalidades Craniofaciais/fisiopatologia , Modelos Animais de Doenças , Ectrópio/diagnóstico por imagem , Ectrópio/fisiopatologia , Feminino , Predisposição Genética para Doença , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Humanos , Masculino , Camundongos , Anormalidades Dentárias/diagnóstico por imagem , Anormalidades Dentárias/fisiopatologia , Xenopus , Adulto Jovem , delta Catenina
13.
J Clin Invest ; 130(2): 813-826, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31904590

RESUMO

Multipass membrane proteins have a myriad of functions, including transduction of cell-cell signals, ion transport, and photoreception. Insertion of these proteins into the membrane depends on the endoplasmic reticulum (ER) membrane protein complex (EMC). Recently, birth defects have been observed in patients with variants in the gene encoding a member of this complex, EMC1. Patient phenotypes include congenital heart disease, craniofacial malformations, and neurodevelopmental disease. However, a molecular connection between EMC1 and these birth defects is lacking. Using Xenopus, we identified defects in neural crest cells (NCCs) upon emc1 depletion. We then used unbiased proteomics and discovered a critical role for emc1 in WNT signaling. Consistent with this, readouts of WNT signaling and Frizzled (Fzd) levels were reduced in emc1-depleted embryos, while NCC defects could be rescued with ß-catenin. Interestingly, other transmembrane proteins were mislocalized upon emc1 depletion, providing insight into additional patient phenotypes. To translate our findings back to humans, we found that EMC1 was necessary for human NCC development in vitro. Finally, we tested patient variants in our Xenopus model and found the majority to be loss-of-function alleles. Our findings define molecular mechanisms whereby EMC1 dysfunction causes disease phenotypes through dysfunctional multipass membrane protein topogenesis.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Complexos Multiproteicos/metabolismo , Crista Neural/embriologia , Transtornos do Neurodesenvolvimento/metabolismo , Via de Sinalização Wnt , Proteínas de Xenopus/metabolismo , Animais , Modelos Animais de Doenças , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Membranas Intracelulares/patologia , Complexos Multiproteicos/genética , Crista Neural/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Xenopus , Proteínas de Xenopus/genética
14.
Front Physiol ; 10: 1612, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038292

RESUMO

Familial dilated cardiomyopathy (DCM), clinically characterized by enlargement and dysfunction of one or both ventricles of the heart, can be caused by variants in sarcomeric genes including TNNC1 (encoding cardiac troponin C, cTnC). Here, we report the case of two siblings with severe, early onset DCM who were found to have compound heterozygous variants in TNNC1: p.Asp145Glu (D145E) and p.Asp132Asn (D132N), which were inherited from the parents. We began our investigation with CRISPR/Cas9 knockout of TNNC1 in Xenopus tropicalis, which resulted in a cardiac phenotype in tadpoles consistent with DCM. Despite multiple maneuvers, we were unable to rescue the tadpole hearts with either human cTnC wild-type or patient variants to investigate the cardiomyopathy phenotype in vivo. We therefore utilized porcine permeabilized cardiac muscle preparations (CMPs) reconstituted with either wild-type or patient variant forms of cTnC to examine effects of the patient variants on contractile function. Incorporation of 50% WT/50% D145E into CMPs increased Ca2+ sensitivity of isometric force, consistent with prior studies. In contrast, incorporation of 50% WT/50% D132N, which had not been previously reported, decreased Ca2+ sensitivity of isometric force. CMPs reconstituted 50-50% with both variants mirrored WT in regard to myofilament Ca2+ responsiveness. Sinusoidal stiffness (SS) (0.2% peak-to-peak) and the kinetics of tension redevelopment (k TR) at saturating Ca2+ were similar to WT for all preparations. Modeling of Ca2+-dependence of k TR support the observation from Ca2+ responsiveness of steady-state isometric force, that the effects on each mutant (50% WT/50% mutant) were greater than the combination of the two mutants (50% D132N/50% D145E). Further studies are needed to ascertain the mechanism(s) of these variants.

15.
J Med Genet ; 56(2): 113-122, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30323019

RESUMO

BACKGROUND: Early infantile epileptic encephalopathies are severe disorders consisting of early-onset refractory seizures accompanied often by significant developmental delay. The increasing availability of next-generation sequencing has facilitated the recognition of single gene mutations as an underlying aetiology of some forms of early infantile epileptic encephalopathies. OBJECTIVES: This study was designed to identify candidate genes as a potential cause of early infantile epileptic encephalopathy, and then to provide genetic and functional evidence supporting patient variants as causative. METHODS: We used whole exome sequencing to identify candidate genes. To model the disease and assess the functional effects of patient variants on candidate protein function, we used in vivo CRISPR/Cas9-mediated genome editing and protein overexpression in frog tadpoles. RESULTS: We identified novel de novo variants in neuronal differentiation factor 2 (NEUROD2) in two unrelated children with early infantile epileptic encephalopathy. Depleting neurod2 with CRISPR/Cas9-mediated genome editing induced spontaneous seizures in tadpoles, mimicking the patients' condition. Overexpression of wild-type NEUROD2 induced ectopic neurons in tadpoles; however, patient variants were markedly less effective, suggesting that both variants are dysfunctional and likely pathogenic. CONCLUSION: This study provides clinical and functional support for NEUROD2 variants as a cause of early infantile epileptic encephalopathy, the first evidence of human disease caused by NEUROD2 variants.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neuropeptídeos/genética , Espasmos Infantis/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Pré-Escolar , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Larva/genética , Imageamento por Ressonância Magnética , Masculino , Mutação de Sentido Incorreto , Espasmos Infantis/diagnóstico por imagem , Espasmos Infantis/etiologia , Sequenciamento do Exoma , Xenopus laevis/embriologia , Xenopus laevis/genética
16.
Development ; 145(20)2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337486

RESUMO

A growing number of tissue-specific inherited disorders are associated with impaired ribosome production, despite the universal requirement for ribosome function. Recently, mutations in RPSA, a protein component of the small ribosomal subunit, were discovered to underlie approximately half of all isolated congenital asplenia cases. However, the mechanisms by which mutations in this ribosome biogenesis factor lead specifically to spleen agenesis remain unknown, in part due to the lack of a suitable animal model for study. Here we reveal that RPSA is required for normal spleen development in the frog, Xenopus tropicalis Depletion of Rpsa in early embryonic development disrupts pre-rRNA processing and ribosome biogenesis, and impairs expression of the key spleen patterning genes nkx2-5, bapx1 and pod1 in the spleen anlage. Importantly, we also show that whereas injection of human RPSA mRNA can rescue both pre-rRNA processing and spleen patterning, injection of human mRNA bearing a common disease-associated mutation cannot. Together, we present the first animal model of RPSA-mediated asplenia and reveal a crucial requirement for RPSA in pre-rRNA processing and molecular patterning during early Xenopus development.


Assuntos
Estudos de Associação Genética , Síndromes de Imunodeficiência/genética , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA/genética , Proteínas Ribossômicas/genética , Baço/anormalidades , Baço/embriologia , Proteínas de Xenopus/genética , Xenopus/embriologia , Xenopus/genética , Animais , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Síndromes de Imunodeficiência/embriologia , Morfolinos/farmacologia , Mutação/genética , Doenças da Imunodeficiência Primária , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Proteínas Ribossômicas/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Proteínas de Xenopus/metabolismo
17.
Methods Mol Biol ; 1865: 163-174, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30151766

RESUMO

In the US and Europe, birth defects are the leading cause of infant mortality. Among birth defects, Congenital Heart Disease (CHD) occurs in approximately 8 out of 1000 live births, affects 1.3 million newborns per year worldwide, and has the highest mortality rate. While there is evidence to indicate that CHD does have a genetic basis, most of the CHD burden remains unexplained genetically. Fortunately, new genomics technologies are enabling genetic analyses of CHD patients. Whole exome sequencing of trios as well as copy number variations assayed by high-density SNP arrays can now be obtained at high efficiency and relatively low cost. These efforts are identifying a number of sequence variations in patients with CHD, but only a small percentage have second unrelated alleles to validate them as disease causing. Importantly, most of these candidate genes do not have an identified molecular mechanism implicating them in cardiac development. Therefore, there is a pressing need to develop rapid functional assays to evaluate candidate genes for a role in cardiac development, and then to investigate the underlying developmental mechanisms. Most recently, the advent of CRISPR/Cas9 genome editing technology has greatly enhanced the ability to manipulate and observe the function of the genome in model systems and cell culture. Incorporating the power of a developmental system such as Xenopus tropicalis with the CRISPR/Cas9 system and the microscale imaging modality optical coherence tomography (OCT), the analysis of thousands of different genes in cardiac development becomes possible.


Assuntos
Sistemas CRISPR-Cas/genética , Testes Genéticos/métodos , Cardiopatias Congênitas/genética , Xenopus/genética , Animais , Cardiopatias Congênitas/diagnóstico por imagem , Larva/genética , Fenótipo , RNA Guia de Cinetoplastídeos/metabolismo , Tomografia de Coerência Óptica
18.
Nat Commun ; 8(1): 2024, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222508

RESUMO

Cpf1 is a novel class of CRISPR-Cas DNA endonucleases, with a wide range of activity across different eukaryotic systems. Yet, the underlying determinants of this variability are poorly understood. Here, we demonstrate that LbCpf1, but not AsCpf1, ribonucleoprotein complexes allow efficient mutagenesis in zebrafish and Xenopus. We show that temperature modulates Cpf1 activity by controlling its ability to access genomic DNA. This effect is stronger on AsCpf1, explaining its lower efficiency in ectothermic organisms. We capitalize on this property to show that temporal control of the temperature allows post-translational modulation of Cpf1-mediated genome editing. Finally, we determine that LbCpf1 significantly increases homology-directed repair in zebrafish, improving current approaches for targeted DNA integration in the genome. Together, we provide a molecular understanding of Cpf1 activity in vivo and establish Cpf1 as an efficient and inducible genome engineering tool across ectothermic species.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Endonucleases/metabolismo , Edição de Genes/métodos , Reparo de DNA por Recombinação , Animais , Proteínas de Bactérias/genética , Endonucleases/genética , Humanos , Modelos Genéticos , Mutagênese , Temperatura , Xenopus/genética , Peixe-Zebra/genética
19.
Sci Rep ; 7(1): 15115, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118359

RESUMO

Mucociliary flow is an important defense mechanism in the lung to remove inhaled pathogens and pollutants. Disruption of ciliary flow can lead to respiratory infections. Multiple factors, from drugs to disease can cause an alteration in ciliary flow. However, less attention has been given to injury of the ciliated epithelium. In this study, we show how optical coherence tomography (OCT) can be used to investigate injury to the ciliated epithelium in a multi-contrast setting. We used particle tracking velocimetry (PTV-OCT) to investigate the cilia-driven flow field and 3D speckle variance imaging to investigate size and extent of injury caused to the skin of Xenopus embryos. Two types of injuries are investigated, focal injury caused by mechanical damage and diffuse injury by a calcium chloride shock. We additionally investigate injury and regeneration of cilia to calcium chloride on ex vivo mouse trachea. This work describes how OCT can be used as a tool to investigate injury and regeneration in ciliated epithelium.


Assuntos
Cílios/fisiologia , Epitélio/fisiopatologia , Pele/fisiopatologia , Traqueia/fisiopatologia , Animais , Epitélio/embriologia , Epitélio/lesões , Camundongos Endogâmicos C57BL , Regeneração , Reologia , Pele/embriologia , Pele/lesões , Tomografia de Coerência Óptica , Traqueia/diagnóstico por imagem , Traqueia/lesões , Xenopus
20.
Biomed Opt Express ; 7(11): 4674-4684, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27896006

RESUMO

We developed ultra-high-speed, phase-sensitive, full-field reflection interferometric confocal microscopy (FFICM) for the quantitative characterization of in vivo microscale biological motions and flows. We demonstrated 2D frame rates in excess of 1 kHz and pixel throughput rates up to 125 MHz. These fast FFICM frame rates were enabled by the use of a low spatial coherence, high-power laser source. Specifically, we used a dense vertical cavity surface emitting laser (VCSEL) array that synthesized low spatial coherence light through a large number of narrowband, mutually-incoherent emitters. Off-axis interferometry enabled single-shot acquisition of the complex-valued interferometric signal. We characterized the system performance (~2 µm lateral resolution, ~8 µm axial gating depth) with a well-known target. We also demonstrated the use of this highly parallelized confocal microscopy platform for visualization and quantification of cilia-driven surface flows and cilia beat frequency in an important animal model (Xenopus embryos) with >1 kHz frame rate. Such frame rates are needed to see large changes in local flow velocity over small distance (high shear flow), in this case, local flow around a single ciliated cell. More generally, our results are an important demonstration of low-spatial coherence, high-power lasers in high-performance, quantitative biomedical imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...