Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 108(6): 1740-1749, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38219009

RESUMO

Phomopsis stem canker of cultivated sunflower (Helianthus annuus L.) can be caused by multiple necrotrophic fungi in the genus Diaporthe, with Diaporthe helianthi and D. gulyae being the most common causal agents in the United States. Infection begins at the leaf margins and proceeds primarily through the vasculature, progressing from the leaf through the petiole to the stem, resulting in formation of brown stem lesions centered around the petiole. Sunflower resistance to Phomopsis stem canker is quantitative and genetically complex. Due to the intricate disease process, resistance is possible at different stages of infection, and multiple forms of defense may contribute to the overall level of quantitative resistance. In this study, sunflower lines exhibiting field resistance to Phomopsis stem canker were evaluated for stem and leaf resistance to multiple isolates of D. helianthi and D. gulyae in greenhouse experiments, and responses to the two species were compared. Additionally, selected resistant and susceptible lines were evaluated for petiole transmission resistance to D. helianthi. Lines with distinct forms of resistance were identified, and results indicated that responses to stem inoculation were strongly correlated (Spearman's coefficient 0.598, P < 0.001) for the two fungal species, while leaf responses were not (Spearman's coefficient 0.396, P = 0.076). These results provide a basis for genetic dissection of distinct forms of sunflower resistance to Phomopsis stem canker and will facilitate combining different forms of resistance to potentially achieve durable control of this disease in sunflower hybrids.


Assuntos
Helianthus , Phomopsis , Doenças das Plantas , Helianthus/microbiologia , Helianthus/fisiologia , Doenças das Plantas/microbiologia , Caules de Planta/microbiologia , Resistência à Doença
2.
Front Plant Sci ; 14: 1278048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920712

RESUMO

Introduction: Sclerotinia sclerotiorum is a serious pathogen causing severe basal stalk rot (BSR) disease on cultivated sunflower (Helianthus annuus L.) that leads to significant yield losses due to insufficient resistance. The wild annual sunflower species H. petiolaris, commonly known as prairie sunflower is known for its resistance against this pathogen. Sunflower resistance to BSR is quantitative and determined by many genes with small effects on the resistance phenotype. The objective of this study was to identify loci governing BSR resistance derived from H. petiolaris using a quantitative trait loci (QTL) mapping approach. Methods: BSR resistance among lines of an advanced backcross population (AB-QTL) with 174 lines developed from a cross of inbred line HA 89 with H. petiolaris PI 435843 was determined in the field during 2017-2019, and in the greenhouse in 2019. AB-QTL lines and the HA 89 parent were genotyped using genotyping-by-sequencing and a genetic linkage map was developed spanning 997.51 cM and using 1,150 SNP markers mapped on 17 sunflower chromosomes. Results and discussion: Highly significant differences (p<0.001) for BSR response among AB-QTL lines were observed disease incidence (DI) in all field seasons, as well as disease rating (DR) and area under the disease progress curve (AUDPC) in the greenhouse with a moderately high broad-sense heritability (H 2) of 0.61 for the tested resistance parameters. A total of 14 QTL associated with BSR resistance were identified on nine chromosomes, each explaining a proportion of the phenotypic variation ranging from 3.5% to 28.1%. Of the 14 QTL, eight were detected for BSR resistance in the field and six were detected under greenhouse conditions. Alleles conferring increased BSR resistance were contributed by the H. petiolaris parent at 11 of the 14 QTL.

3.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887074

RESUMO

Sclerotinia head rot (HR), caused by Sclerotinia sclerotiorum, is an economically important disease of sunflower with known detrimental effects on yield and quality in humid climates worldwide. The objective of this study was to gain insight into the genetic architecture of HR resistance from a sunflower line HR21 harboring HR resistance introgressed from the wild perennial Helianthus maximiliani. An F2 population derived from the cross of HA 234 (susceptible-line)/HR21 (resistant-line) was evaluated for HR resistance at two locations during 2019−2020. Highly significant genetic variations (p < 0.001) were observed for HR disease incidence (DI) and disease severity (DS) in both individual and combined analyses. Broad sense heritability (H2) estimates across environments for DI and DS were 0.51 and 0.62, respectively. A high-density genetic map of 1420.287 cM was constructed with 6315 SNP/InDel markers developed using genotype-by-sequencing technology. A total of 16 genomic regions on eight sunflower chromosomes, 1, 2, 10, 12, 13, 14, 16 and 17 were associated with HR resistance, each explaining between 3.97 to 16.67% of the phenotypic variance for HR resistance. Eleven of these QTL had resistance alleles from the HR21 parent. Molecular markers flanking the QTL will facilitate marker-assisted selection breeding for HR resistance in sunflower.


Assuntos
Ascomicetos , Helianthus , Ascomicetos/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Helianthus/genética , Doenças das Plantas/genética , Locos de Características Quantitativas
4.
Front Plant Sci ; 13: 840954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665155

RESUMO

Crop wild relatives of the cultivated sunflower (Helianthus annuus L.) are a valuable resource for its sustainable production. Helianthus praecox ssp. runyonii is a wild sunflower known for its resistance against diseases caused by the fungus, Sclerotinia sclerotiorum (Lib.) de Bary, which infects over 400 broadleaf hosts including many important food crops. The objective of this research was to dissect the Sclerotinia basal stalk rot (BSR) resistance introgressed from H. praecox ssp. runyonii into cultivated sunflower. An advanced backcross quantitative trait loci (AB-QTL) mapping population was developed from the cross of a H. praecox accession with cultivated sunflower lines. The AB-QTL population was evaluated for BSR resistance in the field during the summers of 2017-2018 and in the greenhouse in the spring of 2018. Highly significant genetic variations (p < 0.001) were observed for the BSR disease in the field and greenhouse with a moderately high broad-sense heritability (H 2) ranging from 0.66 to 0.73. Genotyping-by-sequencing approach was used to genotype the parents and the progeny lines of the AB-QTL population. A genetic linkage map spanning 1,802.95 cM was constructed using 1,755 single nucleotide polymorphism (SNP) markers mapped on 17 sunflower chromosomes. A total of 19 BSR resistance QTL were detected on nine sunflower chromosomes, each explaining 2.21%-16.99% of the phenotypic variance for resistance in the AB-QTL population. Sixteen of the 19 QTL had alleles conferring increased BSR resistance derived from the H. praecox parent. SNP markers flanking the identified QTL will facilitate marker-assisted breeding to combat the disease in sunflower.

5.
Plant Dis ; 106(5): 1366-1373, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34874175

RESUMO

The necrotrophic fungal pathogen Sclerotinia sclerotiorum can cause disease on numerous plant species, including many important crops. Most S. sclerotiorum-incited diseases of crop plants are initiated by airborne ascospores produced when fungal sclerotia germinate to form spore-bearing apothecia. However, basal stalk rot of sunflower occurs when S. sclerotiorum sclerotia germinate to form mycelia within the soil, which subsequently invade sunflower roots. To determine whether other plant species in the Asteraceae family are susceptible to root infection by S. sclerotiorum, cultivated sunflower (Helianthus annuus L.) and seven other Asteraceae species were evaluated for S. sclerotiorum root infection by inoculation with either sclerotia or mycelial inoculum. Additionally, root susceptibility of sunflower was compared with that of dry edible bean and canola, two plant species susceptible to S. sclerotiorum but not known to display root-initiated infections. Results indicated that multiple Asteraceae family plants are susceptible to S. sclerotiorum root infection after inoculation with either sclerotia or mycelium. These observations expand the range of plant hosts susceptible to S. sclerotiorum root infection, elucidate differences in root inoculation methodology, and emphasize the importance of soilborne infection to Asteraceae crop and weed species.


Assuntos
Ascomicetos , Asteraceae , Helianthus , Helianthus/microbiologia , Doenças das Plantas/microbiologia
6.
Plant Dis ; 105(2): 464-472, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33264029

RESUMO

Resistance of sunflower to basal stalk rot (BSR) caused by the fungus Sclerotinia sclerotiorum is quantitative, controlled by multiple genes contributing small effects. Consequently, artificial inoculation procedures allowing sufficient throughput and resolution of resistance are needed to identify highly resistant sunflower germplasm resources and to map loci contributing to resistance. The objective of this study was to develop a greenhouse-based method for evaluating sunflower quantitative resistance to BSR that would be simple, space- and time-efficient, high throughput, high resolution, and correlated with field observations. Experiments were conducted with 5-week-old sunflower plants and Sclerotinia-infested millet seed as inoculum to assess the impact of pot size and temperature and to determine the most favorable inoculum rate and placement. Subsequently, an additional experiment was performed to assess the correlation of the greenhouse inoculation procedure with field results by using a panel of 32 sunflower genotypes with known field response to BSR previously determined in multiyear, multilocation artificially inoculated trials. Experimental observations indicated that the newly developed greenhouse inoculation procedure provided improved resolution to identify highly resistant genotypes and was strongly correlated with field observations. This method will be useful for screening of sunflower experimental and breeding materials, disease phenotyping of genetic mapping populations, and evaluation of resistance to different pathogen isolates.


Assuntos
Ascomicetos , Helianthus , Helianthus/genética , Melhoramento Vegetal , Doenças das Plantas , Locos de Características Quantitativas/genética
7.
Plant Dis ; 104(11): 2823-2831, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32955406

RESUMO

Downy mildew, caused by Plasmopara halstedii (Farl.) Berl. and de Toni, is an economically important disease in cultivated sunflowers, Helianthus annuus L. Resistance genes incorporated into commercial hybrids are used as an effective disease management tool, but the duration of effectiveness is limited as virulence evolves in the pathogen population. A comprehensive assessment of pathogen virulence was conducted in 2014 and 2015 in the U.S. Great Plains states of North Dakota and South Dakota, where approximately 75% of the U.S. sunflower is produced annually. The virulence phenotypes (and races) of 185 isolates were determined using the U.S. standard set of nine differentials. Additionally, the virulence phenotypes of 61 to 185 isolates were determined on 13 additional lines that have been used to evaluate pathogen virulence in North America and/or internationally. Although widespread virulence was identified on several genes, new virulence was identified on the Pl8 resistance gene, and no virulence was observed on the PlArg, Pl15, Pl17 and Pl18 genes. Results of this study suggest that three additional lines should be used as differentials and agree with previous studies that six lines proposed as differentials should be used in two internationally accepted differential sets. For effective disease management using genetic resistance, it is critical that virulence data be relevant and timely. This is best accomplished when pathogen virulence is determined frequently and by using genetic lines containing resistance genes actively incorporated into commercial cultivars.


Assuntos
Doenças das Plantas , América do Norte , North Dakota , Fenótipo , Estados Unidos , Virulência/genética
8.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098308

RESUMO

Phomopsis stem canker (PSC) caused by Diaporthe helianthi is increasingly becoming a global threat for sunflower production. In this study, the genetic basis of PSC resistance was investigated in a recombinant inbred line (RIL) population developed from a cross between HA 89 (susceptible) and HA-R3 (resistant). The RIL population was evaluated for PSC disease incidence (DI) in seven screening trials at multiple locations during 2016-2018. The distribution of PSC DI in the RIL population was continuous, confirming a polygenic inheritance of the trait. A moderately high broad-sense heritability (H2, 0.76) was estimated for the trait across environments. In the combined analysis, both the genotype and the genotype × environment interactions were highly significant. A linkage map spanning 1505.33 cM was constructed using genotyping-by-sequencing derived markers. Marker-trait association analysis identified a total of 15 quantitative trait loci (QTL) associated with PSC resistance on 11 sunflower chromosomes, each explaining between 5.24 and 17.39% of the phenotypic variation. PSC resistance QTL were detected in two genomic regions each on chromosomes 3, 5, 13, and 17, while one QTL each was detected in the remaining seven chromosomes. Tightly linked single nucleotide polymorphism (SNP) markers flanking the PSC resistance QTL will facilitate marker-assisted selection in PSC resistance sunflower breeding.


Assuntos
Cromossomos de Plantas/genética , Resistência à Doença/genética , Helianthus/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Ascomicetos/fisiologia , Mapeamento Cromossômico , Genótipo , Helianthus/classificação , Helianthus/microbiologia , Escore Lod , Fenótipo , Doenças das Plantas/microbiologia
9.
Front Plant Sci ; 11: 617920, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613588

RESUMO

Basal stalk rot (BSR), caused by the fungus Sclerotinia sclerotiorum, is a serious disease of sunflower (Helianthus annuus L.) in the humid temperate growing areas of the world. BSR resistance is quantitative and conditioned by multiple genes. Our objective was to dissect the BSR resistance introduced from the wild annual species Helianthus argophyllus using a quantitative trait loci (QTL) mapping approach. An advanced backcross population (AB-QTL) with 134 lines derived from the cross of HA 89 with a H. argophyllus Torr. and Gray accession, PI 494573, was evaluated for BSR resistance in three field and one greenhouse growing seasons of 2017-2019. Highly significant genetic variations (p < 0.001) were observed for BSR disease incidence (DI) in all field screening tests and disease rating and area under the disease progress curve in the greenhouse. The AB-QTL population and its parental lines were genotyped using the genotyping-by-sequencing method. A genetic linkage map spanning 2,045.14 cM was constructed using 3,110 SNP markers mapped on 17 sunflower chromosomes. A total of 21 QTL associated with BSR resistance were detected on 11 chromosomes, each explaining a phenotypic variation ranging from 4.5 to 22.6%. Of the 21 QTL, eight were detected for BSR DI measured in the field, seven were detected for traits measured in the greenhouse, and six were detected from both field and greenhouse tests. Thirteen of the 21 QTL had favorable alleles from the H. argophyllus parent conferring increased BSR resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...