Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(10): 9455-9467, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37127554

RESUMO

Transition metal dichalcogenides (TMDCs) are promising two-dimensional (2D) materials for next-generation optoelectronic devices; they can also provide opportunities for further advances in physics. Structuring 2D TMDC sheets as nanoribbons has tremendous potential for electronic state modification. However, a bottom-up synthesis of long TMDC nanoribbons with high monolayer selectivity on a large scale has not yet been reported yet. In this study, we successfully synthesized long WxOy nanowires and grew monolayer WS2 nanoribbons on their surface. The supply of source atoms from a vapor-solid bilayer and chemical reaction at the atomic-scale interface promoted a self-limiting growth process. The developed method exhibited a high monolayer selection yield on a large scale and enabled the growth of long (∼100 µm) WS2 nanoribbons with electronic properties characterized by optical spectroscopy and electrical transport measurements. The produced nanoribbons were isolated from WxOy nanowires by mechanical exfoliation and used as channels for field-effect transistors. The findings of this study can be used in future optoelectronic device applications and advanced physics research.

2.
Nano Lett ; 23(10): 4533-4540, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37155295

RESUMO

Janus transition metal dichalcogenides (TMDCs), with dissimilar chalcogen atoms on each side of TMDCs, have garnered considerable research attention because of the out-of-plane intrinsic polarization in monolayer TMDCs. Although a plasma process has been proposed for synthesizing Janus TMDCs based on the atomic substitution of surface atoms at room temperature, the formation dynamics and intermediate electronic states have not been completely examined. In this study, we investigated the intermediate state between MoSe2 and Janus MoSeS during plasma processing. Atomic composition analysis and atomic-scale structural observations revealed the intermediate partially substituted Janus (PSJ) structure. Combined with theoretical calculations, we successfully clarified the characteristic Raman modes in the intermediate PSJ structure. The PL exhibited discontinuous transitions that could not be explained by the theoretical calculations. These findings will contribute toward understanding the formation process and electronic-state modulation of Janus TMDCs.

3.
Sci Rep ; 12(1): 19458, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376359

RESUMO

Typical ductile materials are metals, which deform by the motion of defects like dislocations in association with non-directional metallic bonds. Unfortunately, this textbook mechanism does not operate in most inorganic semiconductors at ambient temperature, thus severely limiting the development of much-needed flexible electronic devices. We found a shear-deformation mechanism in a recently discovered ductile semiconductor, monoclinic-silver sulfide (Ag2S), which is defect-free, omni-directional, and preserving perfect crystallinity. Our first-principles molecular dynamics simulations elucidate the ductile deformation mechanism in monoclinic-Ag2S under six types of shear systems. Planer mass movement of sulfur atoms plays an important role for the remarkable structural recovery of sulfur-sublattice. This in turn arises from a distinctively high symmetry of the anion-sublattice in Ag2S, which is not seen in other brittle silver chalcogenides. Such mechanistic and lattice-symmetric understanding provides a guideline for designing even higher-performance ductile inorganic semiconductors.

4.
ACS Nano ; 16(7): 11360-11373, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35793540

RESUMO

Transition metal dichalcogenides (TMDCs), including MoS2 and WS2, are potential candidates for next-generation semiconducting materials owing to their atomically thin structure and strong optoelectrical responses, which allow for flexible optoelectronic applications. Monolayer TMDCs have been grown utilizing chemical vapor deposition (CVD) techniques. Enhancing the domain size with high crystallinity and forming heterostructures are important topics for practical applications. In this study, the size of monolayer WS2 increased via the vapor-liquid-solid growth-based CVD technique utilizing the confined space of the substrate-stacked microreactor. The use of spin-coated metal salts (Na2WO4 and Na2MoO4) and organosulfur vapor allowed us to precisely control the source supply and investigate the growth in a systematic manner. We obtained a relatively low activation energy for growth (1.02 eV), which is consistent with the surface diffusion-limited growth regime observed in the confined space. Through systematic photoluminescence (PL) analysis, we determined that a growth temperature of ∼820 °C is optimal for producing high-quality WS2 with a narrow PL peak width (∼35 meV). By controlling the source balance of W and S, we obtained large-sized fully monolayered WS2 (∼560 µm) and monolayer WS2 with bilayer spots (∼1100 µm). Combining two distinct sources of transition metals, WS2/MoS2 lateral heterostructures were successfully created. In electrical transport measurements, the monolayer WS2 grown under optimal conditions has a high on-current (∼70 µA/µm), on/off ratio (∼5 × 108), and a field-effect mobility of ∼7 cm2/(V s). The field-effect transistor displayed an intrinsic photoresponse with wavelength selectivity that originated from the photoexcited carriers.

5.
J Phys Chem Lett ; 11(11): 4536-4541, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32443935

RESUMO

The use of artificial neural network (ANN) potentials trained with first-principles calculations has emerged as a promising approach for molecular dynamics (MD) simulations encompassing large space and time scales while retaining first-principles accuracy. To date, however, the application of ANN-MD has been limited to near-equilibrium processes. Here we combine first-principles-trained ANN-MD with multiscale shock theory (MSST) to successfully describe far-from-equilibrium shock phenomena. Our ANN-MSST-MD approach describes shock-wave propagation in solids with first-principles accuracy but a 5000 times shorter computing time. Accordingly, ANN-MD-MSST was able to resolve fine, long-time elastic deformation at low shock speed, which was impossible with first-principles MD because of the high computational cost. This work thus lays a foundation of ANN-MD simulation to study a wide range of far-from-equilibrium processes.

6.
J Chem Phys ; 151(12): 124303, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575208

RESUMO

First-principles molecular dynamics (FPMD) simulations are highly accurate, but due to their high calculation cost, the computational scale is often limited to hundreds of atoms and few picoseconds under specific temperature and pressure conditions. We present here the guidelines for creating artificial neural network empirical interatomic potential (ANN potential) trained with such a limited FPMD data, which can perform long time scale MD simulations at least under the same conditions. The FPMD data for training are prepared on the basis of the convergence of radial distribution function [g(r)]. While training the ANN using total energy and atomic forces of the FPMD data, the error of pressure is also monitored and minimized. To create further robust potential, we add a small amount of FPMD data to reproduce the interaction between two atoms that are close to each other. ANN potentials for α-Ag2Se were created as an application example, and it has been confirmed that not only g(r) and mean square displacements but also the specific heat requiring a long time scale simulation matched the FPMD and the experimental values. In addition, the MD simulation using the ANN potential achieved over 104 acceleration over the FPMD one. The guidelines proposed here mitigate the creation difficulty of the ANN potential, and a lot of FPMD data sleeping on the hard disk after the research may be put on the front stage again.

7.
Sci Rep ; 9(1): 6275, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000745

RESUMO

Study of arsenic (As) provides guidelines for the development of next-generation materials. We clarify the unique structure of the third crystalline polymorph of natural As (Pnm21-As) by crystallographical experiment and the electronic structure by first-principles computational method. The crystal structure of Pnm21-As is a novel structure in which the basic portions of semi-metalic grey-As and semi-conductor black-As are alternately arranged at the atomic level. For both covalent and van der Waals bonding, the contributions of sd and pd hybridizations are important. Van der Waals bonding characteristics and d orbital contributions can be varied by control of layer stacking. Total charges are clearly divided into positive and negative in the same elements for the grey-As and black-As portions, respectively, is of importance. The sequence in which one-dimensional electron donor and acceptor portions alternate in the layer will be the first description.

8.
Sci Rep ; 9(1): 1828, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755700

RESUMO

Certain bacteria produce iron oxide material assembled with nanoparticles (NPs) that are doped with silicon (Fe:Si ~ 3:1) in ambient environment. Such biogenous iron oxides (BIOX) proved to be an excellent electrode material for lithium-ion batteries, but underlying atomistic mechanisms remain elusive. Here, quantum molecular dynamics simulations, combined with biomimetic synthesis and characterization, show rapid charging and discharging of NP within 100 fs, with associated surface lithiation and delithiation, respectively. The rapid electric response of NP is due to the large fraction of surface atoms. Furthermore, this study reveals an essential role of Si-doping, which reduces the strength of Li-O bonds, thereby achieving more gentle and reversible lithiation culminating in enhanced cyclability of batteries. Combined with recent developments in bio-doping technologies, such fundamental understanding may lead to energy-efficient and environment-friendly synthesis of a wide variety of doped BIOX materials with customized properties.

9.
Nano Lett ; 18(8): 4653-4658, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29990437

RESUMO

Atomically thin layers of transition metal dichalcogenide (TMDC) semiconductors exhibit outstanding electronic and optical properties, with numerous applications such as valleytronics. While unusually rapid and efficient transfer of photoexcitation energy to atomic vibrations was found in recent experiments, its electronic origin remains unknown. Here, we study the lattice dynamics induced by electronic excitation in a model TMDC monolayer, MoSe2, using nonadiabatic quantum molecular dynamics simulations. Simulation results show sub-picosecond disordering of the lattice upon photoexcitation, as measured by the Debye-Waller factor, as well as increasing disorder for higher densities of photogenerated electron-hole pairs. Detailed analysis shows that the rapid, photoinduced lattice dynamics are due to phonon-mode softening, which in turn arises from electronic Fermi surface nesting. Such mechanistic understanding can help guide optical control of material properties for functionalizing TMDC layers, enabling emerging applications such as phase change memories and neuromorphic computing.

10.
J Phys Chem Lett ; 8(24): 6206-6210, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29220193

RESUMO

Two-dimensional and layered MoS2 is a promising candidate for next-generation electric devices due to its unique electronic, optical, and chemical properties. Chemical vapor deposition (CVD) is the most effective way to synthesize MoS2 monolayer on a target substrate. During CVD synthesis, sulfidation of MoO3 surface is a critical reaction step, which converts MoO3 to MoS2. However, initial reaction steps for the sulfidation of MoO3 remain to be fully understood. Here, we report first-principles quantum molecular dynamics (QMD) simulations for the initiation dynamics of sulfidation of MoO3 (010) surface using S2 and S8 molecules. We found that S2 molecule is much more reactive on the MoO3 surface than S8 molecule. Furthermore, our QMD simulations revealed that a surface O-vacancy on the MoO3 surface makes the sulfidation process preferable kinetically and thermodynamically. Our work clarifies an essential role of surface defects to initiate and accelerate the reaction of MoO3 and gas-phase sulfur precursors for CVD synthesis of MoS2 layers.

11.
Nano Lett ; 17(8): 4866-4872, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28671475

RESUMO

Transition metal dichalcogenides (TMDC) like MoS2 are promising candidates for next-generation electric and optoelectronic devices. These TMDC monolayers are typically synthesized by chemical vapor deposition (CVD). However, despite significant amount of empirical work on this CVD growth of monolayered crystals, neither experiment nor theory has been able to decipher mechanisms of selection rules for different growth scenarios, or make predictions of optimized environmental parameters and growth factors. Here, we present an atomic-scale mechanistic analysis of the initial sulfidation process on MoO3 surfaces using first-principles-informed ReaxFF reactive molecular dynamics (RMD) simulations. We identify a three-step reaction process associated with synthesis of the MoS2 samples from MoO3 and S2 precursors: O2 evolution and self-reduction of the MoO3 surface; SO/SO2 formation and S2-assisted reduction; and sulfidation of the reduced surface and Mo-S bond formation. These atomic processes occurring during early stage MoS2 synthesis, which are consistent with experimental observations and existing theoretical literature, provide valuable input for guided rational synthesis of MoS2 and other TMDC crystals by the CVD process.

12.
Sci Adv ; 3(5): e1602339, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28508056

RESUMO

It is extremely difficult to realize two conflicting properties-high hardness and toughness-in one material. Nano-polycrystalline stishovite, recently synthesized from Earth-abundant silica glass, proved to be a super-hard, ultra-tough material, which could provide sustainable supply of high-performance ceramics. Our quantum molecular dynamics simulations show that stishovite amorphizes rapidly on the order of picosecond under tension in front of a crack tip. We find a displacive amorphization mechanism that only involves short-distance collective motions of atoms, thereby facilitating the rapid transformation. The two-step amorphization pathway involves an intermediate state akin to experimentally suggested "high-density glass polymorphs" before eventually transforming to normal glass. The rapid amorphization can catch up with, screen, and self-heal a fast-moving crack. This new concept of fast amorphization toughening likely operates in other pressure-synthesized hard solids.

13.
Nanoscale ; 8(18): 9714-20, 2016 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-27110831

RESUMO

At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...