Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mar Drugs ; 22(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38786599

RESUMO

The purpose of this study was to examine the influence of 10 and 20 nm nanoparticles (AgNPs) on the growth and biochemical composition of microalga Porphyridium purpureum CNMN-AR-02 in two media which differ by the total amount of mineral salts (MM1 with 33.02 g/L and MM2 with 21.65 g/L). Spectrophotometric methods were used to estimate the amount of biomass and its biochemical composition. This study provides evidence of both stimulatory and inhibitory effects of AgNPs on different parameters depending on the concentration, size, and composition of the nutrient medium. In relation to the mineral medium, AgNPs exhibited various effects on the content of proteins (an increase up to 20.5% in MM2 and a decrease up to 36.8% in MM1), carbohydrates (a decrease up to 35.8% in MM1 and 39.6% in MM2), phycobiliproteins (an increase up to 15.7% in MM2 and 56.8% in MM1), lipids (an increase up to 197% in MM1 and no changes found in MM2), antioxidant activity (a decrease in both media). The composition of the cultivation medium has been revealed as one of the factors influencing the involvement of nanoparticles in the biosynthetic activity of microalgae.


Assuntos
Antioxidantes , Meios de Cultura , Nanopartículas Metálicas , Microalgas , Porphyridium , Prata , Porphyridium/efeitos dos fármacos , Porphyridium/metabolismo , Nanopartículas Metálicas/química , Meios de Cultura/química , Prata/química , Prata/farmacologia , Microalgas/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Biomassa
2.
Front Bioeng Biotechnol ; 11: 1224945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609117

RESUMO

Introduction: Our research raises the question of how realistic and safe it is to use gold and silver nanoparticles in biotechnologies to grow microalgae, which will later be used to obtain valuable products. To this purpose, it was necessary to assess the influence of 10 and 20 nm Au and Ag nanoparticles stabilized in citrate on the growth of microalga Porphyridium cruentum in a closed cultivation system, as well as some safety parameters of biomass quality obtained under experimental conditions. Methods: Two types of experiments were conducted with the addition of nanoparticles on the first day and the fifth day of the cultivation cycle. Changes in productivity, lipid content, malondialdehyde (MDA), as well as antioxidant activity of microalgae biomass have been monitored in dynamics during the life cycle in a closed culture system. Results: The impact of nanoparticles on the growth curve of microalgae culture was marked by delaying the onset of the exponential growth phase. A significant increase in the content of lipids and MDA in biomass was noted. Excessive accumulation of lipid oxidation products within the first 24 h of cultivation resulted in altered antioxidant activity of red algae extracts. Discussion: Citrate-stabilized gold and silver nanoparticles proved to be a stress factor for red microalga Porphyridium cruentum, causing significant changes in both biotechnological and biomass safety parameters. Addition of Au and Ag nanoparticles during the exponential growth phase of porphyridium culture led to an enhanced lipid accumulation and reduced MDA values in biomass.

3.
Arch Microbiol ; 203(4): 1547-1554, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33399893

RESUMO

For the first time, the microalga Porphyridium cruentum was tested for its ability to produce silver nanoparticles. To characterize formed silver nanoparticles UV-vis Spectrometry, Scanning Electron Microscopy, Energy-dispersive analysis of X-rays and X-ray diffraction were used. It was shown that after biomass exposure to silver nitrate solution the extracellular formation of spherical-like nanoparticles took place. Functional groups responsible for metal binding were determined by Fourier-transform infrared spectroscopy. The complex of biochemical tests was used for biomass characterization and assessment of the changes of its main components (proteins, lipids, carbohydrates, and phycobilin) during nanoparticle formation. Obtained data indicate a significant decrease of proteins, carbohydrates, phycobiliproteins, and lipids content as well as antiradical activity of biomass. The obtained results show the necessity of determination of optimal conditions for obtaining Porphyridium cruentum biomass enriched with silver nanoparticles for its further application in the pharmaceuticals industry.


Assuntos
Microbiologia Industrial , Nanopartículas Metálicas , Porphyridium , Prata , Biomassa , Carboidratos/análise , Lipídeos/análise , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Microscopia Eletrônica de Varredura , Porphyridium/química , Porphyridium/efeitos dos fármacos , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
4.
Environ Sci Pollut Res Int ; 27(25): 31793-31811, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32504425

RESUMO

Metal accumulation by Spirulina platensis from synthetic effluents with the following chemical composition: Cr/Fe, Cr/Fe/Ni, Cr/Fe/Ni/Zn, and Cr/Fe/Ni/Zn/Cu during repeated cultivation cycle was investigated. Metal ions in different concentrations were added to the culture medium at the exponential and stationary phases of biomass growth and their uptake by biomass was traced using neutron activation analysis. The effect of metal ions on biomass and main biochemical components (proteins, carbohydrates, lipids, phycobilins, and ß-carotene) was monitored. S. platensis keeps high metal accumulation capacity during 2-3 cultivation cycles, while the metal ions were added in the stationary phase of its growth. By adding metals in the exponential phase of growth in the following concentrations: 10 mg/L of chromium (VI), 5 mg/L of iron, 2 mg/L of zinc, nickel, and copper, Spirulina platensis acted as renewable accumulator only in Cr/Fe system. It maintained the accumulation capacity during three cultivation cycles when exposed to lower concentrations of metal ions. Its ability to accumulate metal ions during several cultivation cycles was ensured by the maintenance of the optimal level of proteins and lipid in biomass.


Assuntos
Metais Pesados , Spirulina , Biomassa , Cromo , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...