Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 228(12): 1720-1729, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37101418

RESUMO

Ethanol (EtOH) effectively inactivates enveloped viruses in vitro, including influenza and severe acute respiratory syndrome coronavirus 2. Inhaled EtOH vapor may inhibit viral infection in mammalian respiratory tracts, but this has not yet been demonstrated. Here we report that unexpectedly low EtOH concentrations in solution, approximately 20% (vol/vol), rapidly inactivate influenza A virus (IAV) at mammalian body temperature and are not toxic to lung epithelial cells on apical exposure. Furthermore, brief exposure to 20% (vol/vol) EtOH decreases progeny virus production in IAV-infected cells. Using an EtOH vapor exposure system that is expected to expose murine respiratory tracts to 20% (vol/vol) EtOH solution by gas-liquid equilibrium, we demonstrate that brief EtOH vapor inhalation twice a day protects mice from lethal IAV respiratory infection by reducing viruses in the lungs without harmful side effects. Our data suggest that EtOH vapor inhalation may provide a versatile therapy against various respiratory viral infectious diseases.


Assuntos
Vírus da Influenza A , Influenza Humana , Camundongos , Animais , Humanos , Influenza Humana/tratamento farmacológico , Etanol/farmacologia , Vírus da Influenza A/fisiologia , Pulmão , Administração por Inalação , Mamíferos
2.
Biochemistry ; 55(26): 3708-13, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27292793

RESUMO

The Escherichia coli cell-surface aspartate receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni(2+). These signals are transmitted from the extracellular region of Tar to the cytoplasmic region via the transmembrane domain. The mechanism by which extracellular signals are transmitted into the cell through conformational changes in Tar is predicted to involve a piston displacement of one of the α4 helices of the homodimer. To understand the molecular mechanisms underlying the induction of Tar activity by an attractant, the three-dimensional structures of the E. coli Tar periplasmic domain with and without bound aspartate, Asp-Tar and apo-Tar, respectively, were determined. Of the two ligand-binding sites, only one site was occupied, and it clearly showed the electron density of an aspartate. The slight changes in conformation and the electrostatic surface potential around the aspartate-binding site were observed. In addition, the presence of an aspartate stabilized residues Phe-150' and Arg-73. A pistonlike displacement of helix α4b' was also induced by aspartate binding as predicted by the piston model. Taken together, these small changes might be related to the induction of Tar activity and might disturb binding of the second aspartate to the second binding site in E. coli.


Assuntos
Ácido Aspártico/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Receptores de Aminoácido/química , Receptores de Superfície Celular/química , Sítios de Ligação , Quimiotaxia , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformação Proteica , Receptores de Aminoácido/metabolismo , Receptores de Superfície Celular/metabolismo
3.
Development ; 143(10): 1800-10, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27034424

RESUMO

A striking characteristic of vertebrate development is the pharyngeal arches, which are a series of bulges on the lateral surface of the head of vertebrate embryos. Although each pharyngeal arch is segmented by the reiterative formation of endodermal outpocketings called pharyngeal pouches, the molecular network underlying the reiterative pattern remains unclear. Here, we show that pax1 plays crucial roles in pouch segmentation in medaka (Oryzias latipes) embryos. Importantly, pax1 expression in the endoderm prefigures the location of the next pouch before the cells bud from the epithelium. TALEN-generated pax1 mutants did not form pharyngeal pouches posterior to the second arch. Segmental expression of tbx1 and fgf3, which play essential roles in pouch development, was almost non-existent in the pharyngeal endoderm of pax1 mutants, with disturbance of the reiterative pattern of pax1 expression. These results suggest that pax1 plays a key role in generating the primary pattern for segmentation in the pharyngeal endoderm by regulating tbx1 and fgf3 expression. Our findings illustrate the crucial roles of pax1 in vertebrate pharyngeal segmentation and provide insights into the evolutionary origin of the deuterostome gill slit.


Assuntos
Padronização Corporal , Região Branquial/embriologia , Região Branquial/metabolismo , Oryzias/embriologia , Oryzias/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Animais , Cartilagem/metabolismo , Nervos Cranianos/metabolismo , Embrião não Mamífero , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Brânquias/metabolismo , Modelos Biológicos , Mutação/genética , Fatores de Transcrição Box Pareados/genética , Timo/embriologia
4.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 9): 1219-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25195895

RESUMO

The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni(2+). To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P41212, while those of apo-Tar2 and Asp-Tar2 adopted space groups P212121 and C2, respectively.


Assuntos
Ácido Aspártico/química , Proteínas de Bactérias/química , Escherichia coli/química , Periplasma/química , Receptores de Aminoácido/química , Sequência de Bases , Cristalização , Cristalografia por Raios X , Primers do DNA , Plasmídeos , Reação em Cadeia da Polimerase
5.
Genesis ; 46(4): 185-92, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18395830

RESUMO

We examined the expression and functions of Pax1 and Pax9 in a teleost fish, the medaka Oryzias latipes. While Pax1 and Pax9 show distinct expression in the sclerotome in amniotes, we could not detect the differential expression of Pax1 and Pax9 in the developing sclerotome of the medaka. Furthermore, unlike the mouse, in which Pax1 is essential for development of the vertebral body, and where the neural arch is formed independent of either Pax1 or Pax9, our morpholino knockdown experiments revealed that both Pax1 and Pax9 are indispensable for the development of the vertebral body and neural arch. Therefore, we conclude that after gene duplication, Pax1 and Pax9 subfunctionalize their roles in the sclerotome independently in teleosts and amniotes. In Stage-30 embryo, Pax9 was strongly expressed in the posterior mesoderm, as was also observed for mouse Pax9. Since this expression was not detected for Pax1 in the mouse or fish, this new expression in the posterior mesoderm likely evolved in Pax9 of ancestral vertebrates after gene duplication. Two-month-old fish injected with Pax9 morpholino oligonucleotide showed abnormal morphology in the tail hypural skeletal element, which may have been related to this expression.


Assuntos
Oryzias/embriologia , Fator de Transcrição PAX9/fisiologia , Fatores de Transcrição Box Pareados/fisiologia , Animais , Oligonucleotídeos Antissenso/farmacologia , Oryzias/metabolismo , Fator de Transcrição PAX9/antagonistas & inibidores , Fator de Transcrição PAX9/biossíntese , Fator de Transcrição PAX9/genética , Fatores de Transcrição Box Pareados/antagonistas & inibidores , Fatores de Transcrição Box Pareados/biossíntese , Fatores de Transcrição Box Pareados/genética , Somitos/embriologia , Somitos/metabolismo , Coluna Vertebral/embriologia
6.
Biochim Biophys Acta ; 1780(6): 927-36, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18402782

RESUMO

Oxidative stress is implicated in a variety of disorders including neurodegenerative diseases, and H(2)O(2) is important in the generation of reactive oxygen and oxidative stress. In this study, we have examined the rate of extracellular H(2)O(2) elimination and relevant enzyme activities in cultured astrocytes and C6 glioma cells and have analyzed the results based on a mathematical model. As compared with other types of cultured cells, astrocytes showed higher activity of glutathione peroxidase (GPx) but lower activities for GSH recycling. C6 cells showed relatively low GPx activity, and treatment of C6 cells with dibutyryl-cAMP, which induces astrocytic differentiation, increased catalase activity and H(2)O(2) permeation rate but exerted little effect on other enzyme activities. A mathematical model [N. Makino, K. Sasaki, N. Hashida, Y. Sakakura, A metabolic model describing the H(2)O(2) elimination by mammalian cells including H(2)O(2) permeation through cytoplasmic and peroxisomal membranes: comparison with experimental data, Biochim. Biophys. Acta 1673 (2004) 149-159.], which includes relevant enzymes and H(2)O(2) permeation through membranes, was found to be fitted well to the H(2)O(2) concentration dependences of removal reaction with the permeation rate constants as variable parameters. As compared with PC12 cells as a culture model for neuron, H(2)O(2) removal activity of astrocytes was considerably higher at physiological H(2)O(2) concentrations. The details of the mathematical model are presented in Appendix.


Assuntos
Astrócitos/metabolismo , Glioma/metabolismo , Peróxido de Hidrogênio/metabolismo , Modelos Biológicos , Estresse Oxidativo , Animais , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citoplasma/metabolismo , Peróxido de Hidrogênio/farmacologia , Cinética , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Peroxissomos/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...