Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 806, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547318

RESUMO

One of the main challenges of next generation optical communication is to increase the available bandwidth while reducing the size, cost and power consumption of photonic integrated circuits. Graphene has been recently proposed to be integrated with silicon photonics to meet these goals because of its high mobility, fast carrier dynamics and ultra-broadband optical properties. We focus on graphene photodetectors for high speed datacom and telecom applications based on the photo-thermo-electric effect, allowing for direct optical power to voltage conversion, zero dark current, and ultra-fast operation. We report on a chemical vapour deposition graphene photodetector based on the photo-thermoelectric effect, integrated on a silicon waveguide, providing frequency response >65 GHz and optimized to be interfaced to a 50 Ω voltage amplifier for direct voltage amplification. We demonstrate a system test leading to direct detection of 105 Gbit s-1 non-return to zero and 120 Gbit s-1 4-level pulse amplitude modulation optical signals.

2.
Nanoscale Adv ; 3(5): 1352-1361, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132865

RESUMO

The employment of two-dimensional materials, as growth substrates or buffer layers, enables the epitaxial growth of layered materials with different crystalline symmetries with a preferential crystalline orientation and the synthesis of heterostructures with a large lattice constant mismatch. In this work, we employ single crystalline graphene to modify the sulfurization dynamics of copper foil for the deterministic synthesis of large-area Cu9S5 crystals. Molecular dynamics simulations using the Reax force-field are used to mimic the sulfurization process of a series of different atomistic systems specifically built to understand the role of graphene during the sulphur atom attack over the Cu(111) surface. Cu9S5 flakes show a flat morphology with an average lateral size of hundreds of micrometers. Cu9S5 presents a direct band-gap of 2.5 eV evaluated with light absorption and light emission spectroscopies. Electrical characterization shows that the Cu9S5 crystals present high p-type doping with a hole mobility of 2 cm2 V-1 s-1.

3.
Phys Chem Chem Phys ; 20(19): 13322-13330, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29717315

RESUMO

The surface structure of Few-Layer Graphene (FLG) epitaxially grown on the C-face of SiC has been investigated by TM-AFM in ambient air and upon interaction with dilute aqueous solutions of bio-organic molecules (l-methionine and dimethyl sulfoxide, DMSO). Before interaction with molecular solutions, we observe nicely ordered, three-fold oriented rippled domains, with a 4.7 ± 0.2 nm periodicity (small periodicity, SP) and a peak-to-valley distance in the range 0.1-0.2 nm. Upon mild interaction with the molecular solution, the ripple periodicity "relaxes" to 6.2 ± 0.2 nm (large periodicity, LP), while the peak-to-valley height increases to 0.2-0.3 nm. When additional energy is transferred to the system through sonication in solution, graphene planes are peeled off, as shown by quantitative analysis of Raman spectroscopy and X-ray photoelectron spectroscopy which indicate a neat reduction of thickness. Upon exfoliation rippled domains are no longer observed. In comparative experiments on cleaved HOPG, we could not observe ripples on pristine samples in ambient air, while LP ripples develop upon interaction with the molecular solutions. Recent literature on similar systems is not univocal regarding the interpretation of rippling. The ensemble of our comparative observations on FLG and HOPG can be hardly rationalized solely on the basis of the surface assembly of molecules, either organic molecules coming from the solution or adventitious species. We propose to consider rippling as the manifestation of the free-energy minimization of quasi-2D layers, eventually affected by factors such as interplanar stacking, and interactions with molecules and/or with the AFM tip.

4.
ACS Appl Mater Interfaces ; 8(48): 33083-33090, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934132

RESUMO

Germanium is emerging as the substrate of choice for the growth of graphene in CMOS-compatible processes. For future application in next generation devices the accurate control over the properties of high-quality graphene synthesized on Ge surfaces, such as number of layers and domain size, is of paramount importance. Here we investigate the role of the process gas flows on the CVD growth of graphene on Ge(100). The quality and morphology of the deposited material is assessed by using µ-Raman spectroscopy, X-ray photoemission spectroscopy, scanning electron microscopy, and atomic force microscopy. We find that by simply varying the carbon precursor flow different growth regimes yielding to graphene nanoribbons, graphene monolayer, and graphene multilayer are established. We identify the growth conditions yielding to a layer-by-layer growth regime and report on the achievement of homogeneous monolayer graphene with an average intensity ratio of 2D and G bands in the Raman map larger than 3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...