Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(1): 010601, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242658

RESUMO

We study experimentally and numerically the noisy evolution of multipartite entangled states, focusing on superconducting qubit devices accessible via the cloud. We find that a valid modeling of the dynamics requires one to properly account for coherent frequency shifts, caused by stochastic charge-parity fluctuations. We introduce an approach modeling the charge-parity splitting using an extended Markovian environment. This approach is numerically scalable to tens of qubits, allowing us to simulate efficiently the dissipative dynamics of some large multiqubit states. Probing the continuous-time dynamics of increasingly larger and more complex initial states with up to 12 coupled qubits in a ring-graph state, we obtain a good agreement of the experiments and simulations. We show that the underlying many-body dynamics generate decays and revivals of stabilizers, which are used extensively in the context of quantum error correction. Furthermore, we demonstrate the mitigation of 2-qubit coherent interactions (crosstalk) using tailored dynamical decoupling sequences. Our noise model and the numerical approach can be valuable to advance the understanding of error correction and mitigation and invite further investigations of their dynamics.

2.
Phys Rev Lett ; 124(4): 043601, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058770

RESUMO

We study the dynamics of lattice models of quantum spins one-half, driven by a coherent drive and subject to dissipation. Generically the mean-field limit of these models manifests multistable parameter regions of coexisting steady states with different magnetizations. We introduce an efficient scheme accounting for the corrections to mean field by correlations at leading order, and benchmark this scheme using high-precision numerics based on matrix-product operators in one- and two-dimensional lattices. Correlations are shown to wash the mean-field bistability in dimension one, leading to a unique steady state. In dimension two and higher, we find that multistability is again possible, provided the thermodynamic limit of an infinitely large lattice is taken first with respect to the longtime limit. Variation of the system parameters results in jumps between the different steady states, each showing a critical slowing down in the convergence of perturbations towards the steady state. Experiments with trapped ions can realize the model and possibly answer open questions in the nonequilibrium many-body dynamics of these quantum systems, beyond the system sizes accessible to present numerics.

3.
Phys Rev Lett ; 115(21): 217202, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26636869

RESUMO

We introduce a quantum dimer model on the hexagonal lattice that, in addition to the standard three-dimer kinetic and potential terms, includes a competing potential part counting dimer-free hexagons. The zero-temperature phase diagram is studied by means of quantum Monte Carlo simulations, supplemented by variational arguments. It reveals some new crystalline phases and a cascade of transitions with rapidly changing flux (tilt in the height language). We analyze perturbatively the vicinity of the Rokhsar-Kivelson point, showing that this model has the microscopic ingredients needed for the "devil's staircase" scenario [Eduardo Fradkin et al. Phys. Rev. B 69, 224415 (2004)], and is therefore expected to produce fractal variations of the ground-state flux.

4.
Phys Rev Lett ; 101(24): 248901; author reply 248902, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19113679
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(4 Pt 1): 041124, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17155039

RESUMO

We present a detailed study of a model of close-packed dimers on the square lattice with an interaction between nearest-neighbor dimers. The interaction favors parallel alignment of dimers, resulting in a low-temperature crystalline phase. With large-scale Monte Carlo and transfer matrix calculations, we show that the crystal melts through a Kosterlitz-Thouless phase transition to give rise to a high-temperature critical phase, with algebraic decays of correlations functions with exponents that vary continuously with the temperature. We give a theoretical interpretation of these results by mapping the model to a Coulomb gas, whose coupling constant and associated exponents are calculated numerically with high precision. Introducing monomers is a marginal perturbation at the Kosterlitz-Thouless transition and gives rise to another critical line. We study this line numerically, showing that it is in the Ashkin-Teller universality class, and terminates in a tricritical point at finite temperature and monomer fugacity. In the course of this work, we also derive analytic results relevant to the noninteracting case of dimer coverings, including a Bethe ansatz (at the free fermion point) analysis, a detailed discussion of the effective height model, and a free field analysis of height fluctuations.

6.
Phys Rev Lett ; 97(3): 030403, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16907488

RESUMO

Phase transitions occupy a central role in physics, due both to their experimental ubiquity and their fundamental conceptual importance. The explanation of universality at phase transitions was the great success of the theory formulated by Ginzburg and Landau, and extended through the renormalization group by Wilson. However, recent theoretical suggestions have challenged this point of view in certain situations. In this Letter we report the first large-scale simulations of a three-dimensional model proposed to be a candidate for requiring a description beyond the Landau-Ginzburg-Wilson framework: we study the phase transition from the dimer crystal to the Coulomb phase in the cubic dimer model. Our numerical results strongly indicate that the transition is continuous and is compatible with a tricritical universality class, at variance with previous proposals.

7.
Phys Rev Lett ; 96(4): 047211, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16486891

RESUMO

A systematic method for determining order parameters for quantum many-body systems on lattices is developed by utilizing reduced density matrices. This method allows one to extract the order parameter directly from the wave functions of the degenerate ground states without the aid of empirical knowledge, and thus opens a way to explore unknown exotic orders. The applicability of this method is demonstrated numerically or rigorously in models that are considered to exhibit dimer, scalar chiral, and topological orders.

8.
Phys Rev Lett ; 94(23): 235702, 2005 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-16090482

RESUMO

We study a model of close-packed dimers on the square lattice with a nearest neighbor interaction between parallel dimers. This model corresponds to the classical limit of quantum dimer models [D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988)]. By means of Monte Carlo and transfer matrix calculations, we show that this system undergoes a Kosterlitz-Thouless transition separating a low temperature ordered phase where dimers are aligned in columns from a high temperature critical phase with continuously varying exponents. This is understood by constructing the corresponding Coulomb gas, whose coupling constant is computed numerically. We also discuss doped models and implications on the finite-temperature phase diagram of quantum dimer models.

9.
Phys Rev Lett ; 91(17): 177202, 2003 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-14611373

RESUMO

We study the thermal properties of the classical antiferromagnetic Heisenberg model with both nearest (J1) and next-nearest (J2) exchange couplings on the square lattice by extensive Monte Carlo simulations. We show that, for J2/J1>1/2, thermal fluctuations give rise to an effective Z2 symmetry leading to a finite-temperature phase transition. We provide strong numerical evidence that this transition is in the 2D Ising universality class, and that T(c)-->0 with an infinite slope when J2/J1-->1/2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...