Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38674493

RESUMO

Genetic enhancement of grain production and quality is a priority in wheat breeding projects. In this study, we assessed two key agronomic traits-grain protein content (GPC) and thousand kernel weight (TKW)-across 179 Bulgarian contemporary and historic varieties and landraces across three growing seasons. Significant phenotypic variation existed for both traits among genotypes and seasons, and no discernible difference was evident between the old and modern accessions. To understand the genetic basis of the traits, we conducted a genome-wide association study with MLM using phenotypic data from the crop seasons, best linear unbiased estimators, and genotypic data from the 25K Infinium iSelect array. As a result, we detected 16 quantitative trait nucleotides (QTNs) associated with GPC and 15 associated with TKW, all of which passed the false discovery rate threshold. Seven loci favorably influenced GPC, resulting in an increase of 1.4% to 8.1%, while four loci had a positive impact on TKW with increases ranging from 1.9% to 8.4%. While some loci confirmed previously published associations, four QTNs linked to GPC on chromosomes 2A, 7A, and 7B, as well as two QTNs related to TKW on chromosomes 1B and 6A, may represent novel associations. Annotations for proteins involved in the senescence-associated nutrient remobilization and in the following buildup of resources required for seed germination have been found for selected putative candidate genes. These include genes coding for storage proteins, cysteine proteases, cellulose-synthase, alpha-amylase, transcriptional regulators, and F-box and RWP-RK family proteins. Our findings highlight promising genomic regions for targeted breeding programs aimed at improving grain yield and protein content.

2.
Plants (Basel) ; 12(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068562

RESUMO

Sideritis scardica Griseb. is a critically endangered Balkan endemic species, known for its antioxidant, neuroprotective and anti-inflammatory properties. The aim of the present study was to detail an efficient protocol for the micropropagation of S. scardica. In vitro cultures were initiated from the shoot tips of 40 days-old in vivo seedlings and the effects of different plant growth regulator treatments were examined. A Murashige and Skoog nutrient medium (MS) containing 1 mg/L zeatin and 0.1 mg/L indole-3-acetic acid (IAA) proved to be the most efficient for shoot multiplication as it produced quality, vigorous shoots with a mean number of six shoots per explant. For the first time, the antioxidant and antitumor activities of extracts from in vitro-obtained plants were evaluated. In vitro cultivated plants grown in the field revealed a higher total polyphenol content (3929.1 ± 112.2 mg GAE/100 g vs. 3563.5 ± 52.8 mg GAE/100 g) and higher ORAC antioxidant activity (1211.6 ± 27.3 µmol TE/g vs. 939.9 ± 52.4 µmol TE/g) than in situ cultivated plants. A comparison of the antitumor activities of extracts from in vitro propagated shoots, field-grown in vitro-obtained plants and in situ plants on HeLa (cervical adenocarcinoma), HT-29 (colorectal adenocarcinoma) and MCF-7 (breast cancer) human cancer cell lines showed that in vitro propagated shoots had a significant concentration-dependent cytotoxic effect on the cervical adenocarcinoma cell line HeLa, while the field-grown in vitro-obtained and in situ-collected samples induced the highest reduction in the viability of the mammary carcinoma cell line MCF-7. In both cases, the cells of the control non-tumor cell line, BALB/3T3, were significantly less affected. The results showed that the in vitro multiplication protocol ensured the obtainment of numerous plants with antioxidant and antitumor potential.

3.
Foods ; 12(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37048220

RESUMO

Grain protein content (GPC) is a key aspect of grain quality, a major determinant of the flour functional properties and grain nutritional value of bread wheat. Exploiting diverse germplasms to identify genes for improving crop performance and grain nutritional quality is needed to enhance food security. Here, we evaluated GPC in a panel of 255 Triticum aestivum L. accessions from 27 countries. GPC determined in seeds from three consecutive crop seasons varied from 8.6 to 16.4% (11.3% on average). Significant natural phenotypic variation in GPC among genotypes and seasons was detected. The population was evaluated for the presence of the trait-linked single nucleotide polymorphism (SNP) markers via a genome-wide association study (GWAS). GWAS analysis conducted with calculated best linear unbiased estimates (BLUEs) of phenotypic data and 90 K SNP array using the fixed and random model circulating probability unification (FarmCPU) model identified seven significant genomic regions harboring GPC-associated markers on chromosomes 1D, 3A, 3B, 3D, 4B and 5A, of which those on 3A and 3B shared associated SNPs with at least one crop season. The verified SNP-GPC associations provide new promising genomic signals on 3A (SNPs: Excalibur_c13709_2568 and wsnp_Ku_c7811_13387117) and 3B (SNP: BS00062734_51) underlying protein improvement in wheat. Based on the linkage disequilibrium for significant SNPs, the most relevant candidate genes within a 4 Mbp-window included genes encoding a subtilisin-like serine protease; amino acid transporters; transcription factors; proteins with post-translational regulatory functions; metabolic proteins involved in the starch, cellulose and fatty acid biosynthesis; protective and structural proteins, and proteins associated with metal ions transport or homeostasis. The availability of molecular markers within or adjacent to the sequences of the detected candidate genes might assist a breeding strategy based on functional markers to improve genetic gains for GPC and nutritional quality in wheat.

4.
Photosynth Res ; 154(3): 259-276, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36181569

RESUMO

Nitrogen (N) deficiency represents an important limiting factor affecting photosynthetic productivity and the yields of crop plants. Significant reported differences in N use efficiency between the crop species and genotypes provide a good background for the studies of diversity of photosynthetic and photoprotective responses associated with nitrogen deficiency. Using distinct wheat (Triticum aestivum L.) genotypes with previously observed contrasting responses to nitrogen nutrition (cv. Enola and cv. Slomer), we performed advanced analyses of CO2 assimilation, PSII, and PSI photochemistry, also focusing on the heterogeneity of the stress responses in the different leaf levels. Our results confirmed the loss of photosynthetic capacity and enhanced more in lower positions. Non-stomatal limitation of photosynthesis was well reflected by the changes in PSII and PSI photochemistry, including the parameters derived from the fast-fluorescence kinetics. Low photosynthesis in N-deprived leaves, especially in lower positions, was associated with a significant decrease in the activity of alternative electron flows. The exception was the cyclic electron flow around PSI that was enhanced in most of the samples with a low photosynthetic rate. We observed significant genotype-specific responses. An old genotype Slomer with a lower CO2 assimilation rate demonstrated enhanced alternative electron flow and photorespiration capacity. In contrast, a modern, highly productive genotype Enola responded to decreased photosynthesis by a significant increase in nonphotochemical dissipation and cyclic electron flow. Our results illustrate the importance of alternative electron flows for eliminating the excitation pressure at the PSII acceptor side. The decrease in capacity of electron acceptors was balanced by the structural and functional changes of the components of the electron transport chain, leading to a decline of linear electron transport to prevent the overreduction of the PSI acceptor side and related photooxidative damage of photosynthetic structures in leaves exposed to nitrogen deficiency.


Assuntos
Clorofila , Triticum , Triticum/genética , Clorofila/genética , Nitrogênio , Elétrons , Dióxido de Carbono , Genótipo
5.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887316

RESUMO

The wheat semi-dwarfing genes Rht (Reduced height) are widely distributed among the contemporary wheat varieties. These genes also exert pleiotropic effects on plant tolerance towards various abiotic stressors. In this work, frost tolerance was studied in three near-isogenic lines of the facultative variety 'April Bearded' (AB), carrying the wild type allele Rht-B1a (tall phenotype), and the mutant alleles Rht-B1b (semi-dwarf) and Rht-B1c (dwarf), and was further compared with the tolerance of a typical winter type variety, 'Mv Beres'. The level of freezing tolerance was decreasing in the order 'Mv Beres' > AB Rht-B1a > AB Rht-B1b > AB Rht-B1c. To explain the observed differences, cold acclimation-related processes were studied: the expression of six cold-related genes, the phenylpropanoid pathway, carbohydrates, amino acids, polyamines and compounds in the tricarboxylic acid cycle. To achieve this, a comprehensive approach was applied, involving targeted analyses and untargeted metabolomics screening with the help of gas chromatography/liquid chromatography­mass spectrometry setups. Several cold-related processes exhibited similar changes in these genotypes; indeed, the accumulation of eight putrescine and agmatine derivatives, 17 flavones and numerous oligosaccharides (max. degree of polymerization 18) was associated with the level of freezing tolerance in the 'April Bearded' lines. In summary, the mutant Rht alleles may further decrease the generally low frost tolerance of the Rht-B1a, and, based on the metabolomics study, the mechanisms of frost tolerance may differ for a typical winter variety and a facultative variety. Present results point to the complex nature of frost resistance.


Assuntos
Pão , Triticum , Alelos , Mutação , Fenótipo , Triticum/genética
6.
Plants (Basel) ; 10(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073128

RESUMO

Genetic diversity and population structure are key resources for breeding purposes and genetic studies of important agronomic traits in crops. In this study, we described SNP-based genetic diversity, linkage disequilibrium and population structure in a panel of 179 bread wheat advanced cultivars and old accessions from Bulgaria, using an optimized wheat 25K Infinium iSelect array. Out of 19,019 polymorphic SNPs, 17,968 had а known chromosome position on the A (41%), B (42%) and D (11%) genome, and 6% were not assigned to any chromosome. Homoeologous group 4, in particular chromosome 4D, was the least polymorphic. In the total population, the Nei's gene diversity was within the range 0.1-0.5, and the polymorphism information content ranged from 0.1 to 0.4. Significant differences between the old and modern collections were revealed with respect to the linkage disequilibrium (LD): the average values for LD (r2), the percentage of the locus pairs in LD and the LD decay were 0.64, 16% and 3.3 for the old germplasm, and 0.43, 30% and 4.1 for the modern releases, respectively. Structure and k-means clustering algorithm divided the panel into three groups. The old accessions formed a distinct subpopulation. The cluster analysis further distinguished the modern releases according to the geographic region and genealogy. Gene exchange was evidenced mainly between the subpopulations of contemporary cultivars. The achieved understanding of the genetic diversity and structure of the Bulgarian wheat population and distinctiveness of the old germplasm could be of interest for breeders developing cultivars with improved characteristics. The obtained knowledge about SNP informativeness and the LD estimation are worthwhile for selecting markers and for considering the composition of a population in association mapping studies of traits of interest.

7.
Plants (Basel) ; 10(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807753

RESUMO

Strategies and coping mechanisms for stress tolerance under sub-optimal nutrition conditions could provide important guidelines for developing selection criteria in sustainable agriculture. Nitrogen (N) is one of the major nutrients limiting the growth and yield of crop plants, among which wheat is probably the most substantial to human diet worldwide. Physiological status and photosynthetic capacity of two contrasting wheat genotypes (old Slomer and modern semi-dwarf Enola) were evaluated at the seedling stage to assess how N supply affected osmotic stress tolerance and capacity of plants to survive drought periods. It was evident that higher N input in both varieties contributed to better performance under dehydration. The combination of lower N supply and water deprivation (osmotic stress induced by polyethylene glycol treatment) led to greater damage of the photosynthetic efficiency and a higher degree of oxidative stress than the individually applied stresses. The old wheat variety had better N assimilation efficiency, and it was also the one with better performance under N deficiency. However, when both N and water were deficient, the modern variety demonstrated better photosynthetic performance. It was concluded that different strategies for overcoming osmotic stress alone or in combination with low N could be attributed to differences in the genetic background. Better performance of the modern variety conceivably indicated that semi-dwarfing (Rht) alleles might have a beneficial effect in arid regions and N deficiency conditions.

8.
Physiol Plant ; 171(2): 200-216, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32548914

RESUMO

Recent studies have demonstrated that exogenous polyamines have protective effects under various stress condition. A broader understanding of the role of the polyamine pool fine regulation and the alterations of polyamine-related physiological processes could be obtained by comparing the stress effects in different genotypes. In this study, the impact of pre-treatment with putrescine in response to osmotic stress was investigated in the drought-tolerant Katya and drought-sensitive Zora wheat (Triticum aestivum) cultivars. Photosynthetic performance, in vivo thermoluminescence emission from leaves, leaf temperature, polyamine and salicylic acid levels, contents of osmoprotectants, and activities of antioxidant enzymes in the leaves were investigated not only to reveal differences in the physiological processes associated to drought tolerance, but to highlight the modulating strategies of polyamine metabolism between a drought-tolerant and a drought-sensitive wheat genotype. Results showed that the tolerance of Katya under osmotic stress conditions was characterized by higher photosynthetic ability, stable charge separation across the thylakoid membrane in photosystem II, higher proline accumulation and antioxidant activity. Thermoluminescence also revealed differences between the two varieties - a downshift of the B band and an increase of the afterglow band under osmotic stress in Zora, providing original complementary information to leaf photosynthesis. Katya variety exhibited higher constitutive levels of the signaling molecules putrescine and salicylic acid compared to the sensitive Zora. However, responses to exogenous putrescine were more advantageous for the sensitive variety under PEG treatment, which may be in relation with the decreased catabolism of polyamines, suggesting the increased need for polyamine under stress conditions.


Assuntos
Secas , Triticum , Osmorregulação , Putrescina , Plântula , Estresse Fisiológico , Triticum/genética
9.
Physiol Mol Biol Plants ; 26(11): 2139-2149, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33268919

RESUMO

The performance of two contrasting Bulgarian wheat varieties (Slomer, an old tall cultivar, and Enola, a modern semi-dwarf one) to nitrogen deficiency was compared by measuring biochemical parameters characterizing N uptake and assimilation as well as growth and photosynthetic activity of young seedlings. The old genotype displayed better photosynthetic capacity, higher N assimilation expressed by elevated amino acid synthesis and better overall performance under N limitation. This could be explained by the fact that selection of old varieties was performed mostly in environments with low nutrient availability and consequently these genotypes proved to be more suitable for growing on low-input conditions. Upon limiting N supply modern variety preferentially accumulated sugars while the old one retained higher amino acids levels. It was demonstrated that processes involved in N metabolism were tightly interrelated with photochemical reactions and carbon assimilation even at early developmental stage.

10.
Plant Physiol Biochem ; 155: 789-799, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32877878

RESUMO

Heavy metal pollution as well as improper fertilization management represent serious threats to a clean environment and healthy food. This study was conducted to investigate how nitrogen supply influences a plant's ability to cope with cadmium stress in the two wheat cultivars - the modern cv. Katya (carrier of the semi-dwarfing gene Rht8) and the old cv. Slomer. Here we examined the effects of 100 µM CdCl2 on both wheat genotypes grown hydroponically under three different nutrition regimes of 5.5, 10 and 20 mM NO3- by investigating plant growth, pigment content and the functional activity of the photosynthetic apparatus through a combination of PAM chlorophyll fluorescence, P700 photooxidation, oxygen evolution and oxidative stress markers. Data showed that the different genetic background affects the different strategies for metal uptake and allocation, as well as abilities to deal with oxidative stress. The modern cv. Katya restricts the entry of the metal to the roots, but allows its translocation to the shoots. Nevertheless, the photosynthetic performance indicated better protection, possibly mediated by the Rht8 allele. In contrast, the old cv. Slomer tolerates higher cadmium levels in roots and possesses efficient barriers against its transfer to the shoots, but still showed more impaired photosynthetic activity. In general, the impact of cadmium on the photosynthetic apparatus was most deleterious under the lowest nitrogen concentration which was applied, while the highest nitrogen supply alleviated the negative effects of cadmium. The data suggest that the modern breeding allele (Rht8), as well as a better nutrition might contribute to the tolerance to heavy metal stress in the wheat.


Assuntos
Cádmio/farmacologia , Nitrogênio/metabolismo , Triticum/efeitos dos fármacos , Cádmio/efeitos adversos , Fotossíntese , Raízes de Plantas , Triticum/fisiologia
11.
Environ Sci Pollut Res Int ; 27(19): 23664-23676, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32291640

RESUMO

Plant height is among the most important agronomic traits influencing crop yield. Wheat lines carrying Rht genes are important in plant breeding due to their both higher yield capacity and better tolerance to certain environmental stresses. However, the effects of dwarf-inducing genes on stress acclimation mechanisms are still poorly understood. Under the present conditions, cadmium stress induced different stress responses and defence mechanisms in the wild-type and dwarf mutant, and the mutant with the Rht-B1c allele exhibited higher tolerance. In the wild type after cadmium treatment, the abscisic acid synthesis increased in the leaves, which in turn might have induced the polyamine and proline metabolisms in the roots. However, in the mutant line, the slight increment in the leaf abscisic acid content accompanied by relatively high salicylic acid accumulation was not sufficient to induce such a great accumulation of proline and putrescine. Although changes in proline and polyamines, especially putrescine, showed similar patterns, the accumulation of these compounds was antagonistically related to the phytochelatin synthesis in the roots of the wild type after cadmium stress. In the dwarf genotype, a favourable metabolic shift from the synthesis of polyamine and proline to that of phytochelatin was responsible for the higher cadmium tolerance observed.


Assuntos
Cádmio , Triticum , Fitoquelatinas , Poliaminas , Prolina
12.
Plants (Basel) ; 8(8)2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408991

RESUMO

We assessed the photosynthetic responses of eight wheat varieties in conditions of a simulated heat wave in a transparent plastic tunnel for one week. We found that high temperatures (up to 38 °C at midday and above 20 °C at night) had a negative effect on the photosynthetic functions of the plants and provided differentiation of genotypes through sensitivity to heat. Measurements of gas exchange showed that the simulated heat wave led to a 40% decrease in photosynthetic activity on average in comparison to the control, with an unequal recovery of individual genotypes after a release from stress. Our results indicate that the ability to recover after heat stress was associated with an efficient regulation of linear electron transport and the prevention of over-reduction in the acceptor side of photosystem I.

13.
Plant Physiol Biochem ; 137: 189-202, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30798173

RESUMO

Besides their protective role, polyamines also serve as signalling molecules. However, further studies are needed to elucidate the polyamine signalling pathways, especially to identify polyamine-regulated mechanisms and their connections with other regulatory molecules. Reduced height (Rht) genes in wheat are often used in breeding programs to increase harvest index. Some of these genes are encoding DELLA proteins playing role in gibberellic acid signalling. The aim of the present paper was to reveal how the mutations in Rht gene modify the polyamine-regulated processes in wheat. Wild type and two Rht mutant genotypes (Rht 1: semi-dwarf; Rht 3: dwarf mutants) were treated with polyamines. Polyamine treatments differently influenced the polyamine metabolism, the plant growth parameters and certain hormone levels (salicylic acid and abscisic acid) in these genotypes. The observed distinct metabolism of Rht 3 may more likely reflect more intensive polyamine exodus from putrescine to spermidine and spermine, and the catabolism of the higher polyamines. The lower root to shoot translocation of putrescine can contribute to the regulation of polyamine pool, which in turn may be responsible for the observed lack of growth inhibition in Rht 3 after spermidine and spermine treatments. Lower accumulation of salicylic acid and abscisic acid, plant hormones usually linked with growth inhibition, in leaves may also be responsible for the diminished negative effect of higher polyamines on the shoot growth parameters observed in Rht 3. These results provide an insight into the role of polyamines in plant growth regulation based on the investigation of gibberellin-insensitive Rht mutants.


Assuntos
Mutação , Poliaminas/metabolismo , Poliaminas/farmacologia , Triticum/crescimento & desenvolvimento , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Prolina/metabolismo , Putrescina/farmacologia , Ácido Salicílico/metabolismo , Espermidina/farmacologia , Espermina/farmacologia , Triticum/efeitos dos fármacos , Triticum/genética
14.
Photosynth Res ; 136(2): 245-255, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29383631

RESUMO

Assessment of photosynthetic traits and temperature tolerance was performed on field-grown modern genotype (MG), and the local landrace (LR) of wheat (Triticum aestivum L.) as well as the wild relative species (Aegilops cylindrica Host.). The comparison was based on measurements of the gas exchange (A/ci, light and temperature response curves), slow and fast chlorophyll fluorescence kinetics, and some growth and leaf parameters. In MG, we observed the highest CO2 assimilation rate [Formula: see text] electron transport rate (Jmax) and maximum carboxylation rate [Formula: see text]. The Aegilops leaves had substantially lower values of all photosynthetic parameters; this fact correlated with its lower biomass production. The mesophyll conductance was almost the same in Aegilops and MG, despite the significant differences in leaf phenotype. In contrary, in LR with a higher dry mass per leaf area, the half mesophyll conductance (gm) values indicated more limited CO2 diffusion. In Aegilops, we found much lower carboxylation capacity; this can be attributed mainly to thin leaves and lower Rubisco activity. The difference in CO2 assimilation rate between MG and others was diminished because of its higher mitochondrial respiration activity indicating more intense metabolism. Assessment of temperature response showed lower temperature optimum and a narrow ecological valence (i.e., the range determining the tolerance limits of a species to an environmental factor) in Aegilops. In addition, analysis of photosynthetic thermostability identified the LR as the most sensitive. Our results support the idea that the selection for high yields was accompanied by the increase of photosynthetic productivity through unintentional improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions.


Assuntos
Fotossíntese/fisiologia , Melhoramento Vegetal/métodos , Folhas de Planta/anatomia & histologia , Triticum/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Células do Mesofilo/química , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia , Temperatura , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...